Parderio, Pratama Tegar (2025) Carbon Capture and Storage (CCS) : Permodelan Injeksi CO2 Pada Geological Storage Untuk Mendukung Indonesia Menuju Net Zero Emission. Masters thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
6008222009-Master_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 April 2027. Download (5MB) | Request a copy |
Abstract
Indonesia memiliki potensi kapasitas penyimpanan CO2 pada Geological Storage sebesar 400 gigaton, sehingga injeksi CO2 dapat dilakukan untuk mendukung transisi energi fosil. Penelitian ini bertujuan untuk mempelajari fenomena injeksi CO2, meliputi kondisi tekanan, persebaran CO2 dan interaksi terhadap mineral. Selanjutnya, mengidentifikasi kondisi operasi optimum injeksi CO2, serta potensi permasalahan ketika dilakukan injeksi. Penelitian ini diawali dengan simulasi aspek Subsurface. Fenomena yang ditinjau, yaitu Analisis profil tekanan dan suhu sumur, analisis tekanan reservoir, analisis CO2 migration, analisis jumlah fluida CO2 yang tersimpan, dan analisis potensi terjadinya Reaksi Geokimia. Hasil tersebut digunakan sebagai basis perancangan alat injeksi pada Surface Facility, serta inovasi perancangan untuk memanfaatkan Cold Energy. Berdasarkan hasil dari studi ini, jumlah CO2 yang dapat disimpan maksimum sebesar 72468 ton pada flowrate 250 ton/hari. Perancangan Fasilitas injeksi dengan memanfaatkan Cold Energy dari LCO2 untuk menghasilkan Chilled Air menunjukan penurunan nilai Injection Cost yang signifikan hingga 42,7% pada Injection Rate sebesar 1000 ton/hari.
======================================================================================================================================
Indonesia possesses potential for CO2 storage capacity in Geological Storage, estimated at 400 gigatonnes, thereby facilitating CO2 injection as a means to support the transition from fossil fuels. This study aims to investigate the phenomena associated with CO2 injection, focusing on critical parameters such as pressure conditions, CO2 distribution, and mineral interactions. Additionally, the research seeks to identify the optimal operational conditions for CO2 injection and to assess potential challenges that may arise during the injection process. The investigation commences with simulations of subsurface characteristics. The phenomena analyzed include well pressure and temperature profile assessments, reservoir pressure evaluations, CO2 migration, quantification of stored CO2 fluid, and the potential geochemical reactions. The outcomes of these analyses provide a foundational basis for the design of injection equipment at the Surface Facility, as well as for innovative approaches to recover Cold Energy. According to the results, the maximum CO2 storage capacity is estimated to be 72,468 tonnes at a flow rate of 250 tonnes per day. Furthermore, the design of the injection facility, which leverages Cold Energy recovered from liquefied CO2 (LCO2) to generate Chilled Air, demonstrates a significant reduction in Injection Costs, achieving a cost reduction of up to 42.7% at an Injection Rate of 1,000 tonnes per day.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | Climate Action, Clean Energy, Climate Goal, Renewable Energy, Energi Bersih, Climate Goal, Energi Terbarukan |
Subjects: | T Technology > TP Chemical technology > TP155.7 Chemical processes. |
Divisions: | Faculty of Industrial Technology and Systems Engineering (INDSYS) > Chemical Engineering > 24101-(S2) Master Thesis |
Depositing User: | Pratama Tegar Parderio |
Date Deposited: | 03 Feb 2025 02:28 |
Last Modified: | 03 Feb 2025 02:28 |
URI: | http://repository.its.ac.id/id/eprint/117684 |
Actions (login required)
![]() |
View Item |