Optimasi Rute Pendataan Pelanggan Prabayar dengan Algoritma Rute Terpendek

Alfial, Achmad Maulana (2025) Optimasi Rute Pendataan Pelanggan Prabayar dengan Algoritma Rute Terpendek. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6032222130-Master_Thesis.pdf] Text
6032222130-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2027.

Download (4MB) | Request a copy

Abstract

Kurang maksimalnya pencapaian susut distribusi hingga April 2024 dirasa perlu untuk melakukan pemantauan khusus terhadap pelaksanaan rencana kerja yang telah disusun. Salah satu pekerjaan yang diprioritaskan adalah pendataan kwh meter listrik prabayar berdasarkan jumlah potensi pelanggan terbanyak serta menjadi salah satu pendukung kinerja utama. Namun, berdasarkan perhitungan selisih antara target dengan realisasi hingga bulan April 2024, dapat diketahui bahwa realisasi nya menjadi yang terendah diantara pekerjaan yang lain. Sehingga, berdasarkan hal tersebut dapat disimpulkan bahwa pekerjaan pendataan kwh meter listrik prabayar tersebut masih jauh pencapaiannya terhadap target. Penyebabnya yaitu berkurangnya jumlah hari untuk melakukan pendataan tersebut. Optimasi yang dilakukan adalah dengan penentuan rute tercepat saat pendataan kwh meter listrik prabayar dengan penggunaan metode atau algoritma yang sudah teruji. Harapannya setelah dilakukan optimasi, realisasi harian pekerjaan pendataan kwh meter listrik prabayar dapat meningkat. Untuk membangun rute yang optimal, digunakan algoritma genetika dan simulated annealing. Algoritma tersebut merupakan metode yang digunakan untuk memecahkan suatu permasalahan pencarian solusi optimal. Berdasarkan hasil penelitian didapatkan algoritma gabungan antara algoritma genetika dan simulated annealing dihasilkan rute terpendek dengan jumlah pelanggan dan parameter yang sama.
====================================================================================================================================
The lack of maximum achievement of distribution shrinkage until April 2024 makes it necessary to conduct special monitoring of the implementation of the work plan that has been prepared. One of the prioritized works is the data collection of prepaid electricity kwh meters based on the largest number of potential customers and is one of the main performance supporters. However, based on the calculation of the difference between the target and the realization until April 2024, it can be seen that the realization is the lowest among other work. So, based on this it can be concluded that the work of collecting data on prepaid electricity kwh meters is still far from achieving the target. The reason is the reduced number of days to collect the data. The optimization carried out is to determine the fastest route when collecting prepaid electricity kwh meters with the use of methods or algorithms that have been tested. It is hoped that after optimization, the daily realization of prepaid electricity kwh meter data collection work can increase. To build an optimal route, genetic algorithms and simulated annealing are used. The algorithm is a method used to solve a problem of finding optimal solutions. Based on the research results, the combined algorithm between the genetic algorithm and simulated annealing produced the shortest route with the same number of customers and parameters.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Simulated Annealing, Algoritma Genetika, Optimasi, Rute Terpendek, RBM, Genetic Algorithm, Optimization, Shortest Route
Subjects: T Technology > T Technology (General) > T57.84 Heuristic algorithms.
Divisions: Interdisciplinary School of Management and Technology (SIMT) > 61101-Master of Technology Management (MMT)
Depositing User: Achmad Maulana Alfial
Date Deposited: 02 Feb 2025 03:21
Last Modified: 02 Feb 2025 03:21
URI: http://repository.its.ac.id/id/eprint/117732

Actions (login required)

View Item View Item