Eksperimen Metode Single-Phase Immersion Cooling Untuk Baterai Li–Ion Prismatic Menggunakan Minyak Silikon

Pratama, Arnold Rizky (2025) Eksperimen Metode Single-Phase Immersion Cooling Untuk Baterai Li–Ion Prismatic Menggunakan Minyak Silikon. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5019201016_Undergraduate_Thesis .pdf] Text
5019201016_Undergraduate_Thesis .pdf - Accepted Version
Restricted to Repository staff only until 1 April 2027.

Download (3MB) | Request a copy

Abstract

Penggunaan baterai lithium-ion (Li-ion) terus berkembang pesat dalam berbagai industri, seperti elektronik konsumen, kendaraan listrik, dan penyimpanan energi untuk pembangkit listrik terbarukan. Meskipun demikian, salah satu tantangan utama dalam penggunaan baterai Li-ion adalah sensitivitasnya terhadap suhu yang tinggi, yang dapat mengurangi kinerja dan memperpendek umur baterai. Oleh karena itu, sistem manajemen termal baterai (BTMS) yang efektif diperlukan untuk menjaga suhu operasional baterai tetap dalam batas aman, memperpanjang umur pakainya, serta mencegah risiko pelarian termal. Salah satu metode pendinginan yang menjanjikan adalah pendinginan imersi, di mana sel-sel baterai terendam dalam fluida yang memiliki kemampuan tinggi untuk menyerap dan mengalirkan panas. Penelitian ini bertujuan untuk menguji kinerja sistem pendinginan imersi menggunakan minyak silikon sebagai fluida pendingin alternatif dalam aplikasi baterai Li-ion. Penelitian ini mempertimbangkan beberapa variabel kinerja, seperti rasio perendaman (30%, 50%, dan 90%) serta pengaruh sudut kemiringan (0°, 5°, 15°, dan 35°) yang dipengaruhi oleh pergerakan kapal (rolling dan pitching), yang dapat mempengaruhi distribusi cairan pendingin. Pengujian dilakukan dengan menerapkan berbagai tingkat discharge (1C, 2C, dan 3C) pada baterai untuk mengevaluasi efektivitas sistem pendinginan dalam menjaga suhu baterai tetap stabil di bawah batas aman. Hasil eksperimen menunjukkan bahwa pada konfigurasi discharge 1C, minyak silikon mampu menjaga suhu baterai tetap di bawah 40°C tanpa adanya syarat tambahan terkait perendaman atau posisi baterai. Pada discharge 2C, minyak silikon tetap efektif menjaga suhu di bawah 40°C, namun dengan syarat bahwa perendaman baterai dalam minyak silikon harus mencapai minimal 50%. Sementara itu, pada konfigurasi discharge 3C, minyak silikon hanya mampu menjaga suhu baterai tetap di bawah batas aman maksimal jika kondisi perendaman lebih dari 90% dan sudut kemiringan baterai tidak melebihi 15°. Temuan ini mengindikasikan bahwa tingkat perendaman dan posisi baterai (terutama sudut kemiringan) sangat mempengaruhi kinerja termal minyak silikon dalam sistem pendinginan, yang penting dalam aplikasi seperti kendaraan listrik dan sistem penyimpanan energi. Penelitian ini memberikan pemahaman yang lebih baik mengenai potensi penggunaan minyak silikon sebagai fluida imersi untuk sistem pendinginan baterai, dengan aplikasi potensial dalam industri maritim dan kendaraan listrik, di mana pengelolaan suhu yang efisien sangat krusial untuk menjaga kinerja dan keandalan sistem baterai.
==============================================================================================================================
The use of lithium-ion (Li-ion) batteries continues to grow rapidly in various industries, such as consumer electronics, electric vehicles, and energy storage for renewable power plants. Nonetheless, one of the main challenges in using Li-ion batteries is their sensitivity to high temperatures, which can reduce performance and shorten the life of the battery. Therefore, an effective battery thermal management system (BTMS) is needed to keep the battery's operating temperature within safe limits, extend its service life, and prevent the risk of thermal runaway. One promising cooling method is immersion cooling, where battery cells are immersed in a fluid that has a high ability to absorb and dissipate heat. This study aims to test the performance of immersion cooling systems using silicone oil as an alternative cooling fluid in Li-ion battery applications. This study considers several performance variables, such as immersion ratios (30%, 50%, and 90%) as well as the influence of tilt angles (0°, 5°, 15°, and 35°) affected by ship movement (rolling and pitching), which can affect the distribution of coolant. The test was conducted by applying different discharge levels (1C, 2C, and 3C) to the battery to evaluate the effectiveness of the cooling system in keeping the battery temperature stable below safe limits. The results of the experiment showed that in the 1C discharge configuration, silicone oil was able to keep the battery temperature below 40°C without any additional conditions related to immersion or battery position. At a 2C discharge, silicone oil remains effective at keeping the temperature below 40°C, but on the condition that the battery immersion in silicone oil must reach a minimum of 50%. Meanwhile, in the 3C discharge configuration, silicone oil is only able to keep the battery temperature below the maximum safe limit if the immersion condition is more than 90% and the battery tilt angle does not exceed 15°. These findings indicate that the immersion rate and battery position (especially the angle of inclination) greatly affect the thermal performance of silicon oil in cooling systems, which is important in applications such as electric vehicles and energy storage systems. This research provides a better understanding of the potential use of silicon oil as an immersion fluid for battery cooling systems, with potential applications in the maritime industry and electric vehicles, where efficient temperature management is crucial to maintain the performance and reliability of battery systems.

Item Type: Thesis (Other)
Uncontrolled Keywords: Refrigeration, Battery, Silicone oil, Pendinginan, Baterai, minyak Silikon
Subjects: T Technology > TJ Mechanical engineering and machinery > TJ265.E23 Thermodynamics.
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2941 Storage batteries
V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering > VM471 Ships--Electric equipment
Divisions: Faculty of Marine Technology (MARTECH) > Marine Engineering > 36202-(S1) Undergraduate Thesis
Depositing User: Arnold Rizky Pratama
Date Deposited: 03 Feb 2025 08:22
Last Modified: 03 Feb 2025 08:22
URI: http://repository.its.ac.id/id/eprint/117799

Actions (login required)

View Item View Item