Desain Dan Pengujian Mekanik Struktur Morphing Wing Rib Biomimetic Unmanned Aerial Vehicle (UAV) Berbahan Dasar Polylactic Acid (PLA) Dan Acrylonitrile Butadiene Styrene (ABS)

Yusuf, Kevin Atha (2025) Desain Dan Pengujian Mekanik Struktur Morphing Wing Rib Biomimetic Unmanned Aerial Vehicle (UAV) Berbahan Dasar Polylactic Acid (PLA) Dan Acrylonitrile Butadiene Styrene (ABS). Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 02111940000196_Undergraduate_Thesis.pdf] Text
02111940000196_Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2027.

Download (6MB) | Request a copy

Abstract

Sayap dengan model fixed-wing tidak selalu memiliki performa aerodinamika terbaik saat siklus penerbangan penuh, baik pada saat take-off, landing, maupun cruising. Maka dari itu, diperlukan penerapan konsep morphing adaptif untuk mencapai performa aerodinamika optimal saat penerbangan, serta meningkatkan kontrolabilitas dan stabilitas dari suatu UAV. Proses Additive Manufacturing (AM) telah digunakan dalam berbagai bidang, termasuk dalam pengembangan UAV untuk menghasilkan geometri kompleks yang mampu meningkatkan efisiensi struktural serta performa aerodinamika. Morphing UAV wing rib yang dicetak dengan Fused Deposition Modelling (FDM) dengan bahan dasar Polylactic Acid (PLA) dan Acrylonitrile Butadiene Styrene (ABS) akan diuji secara numerikal menggunakan software ANSYS untuk mempelajari pengaruh geometri dan jenis material filamen terhadap distribusi tegangan, regangan dan strain energy pada wing rib, dan pengujian mekanik dilakukan untuk verifikasi lokasi kegagalan berdasarkan lokasi tegangan dan regangan maksimum dari hasil uji numerikal pada displacement tertentu. Terdapat 3 desain wing rib yang akan diteliti, dengan variasi penerapan corrugated rib, bentuk truss dengan cutout, serta aplikasi corrugated rib dari desain truss cutout dan selanjutnya akan dikomparasikan dengan desain terdahulu. Dari hasil pengujian secara numerik yang divalidasi dengan pengujian mekanik didapatkan hasil bahwa rib 3 memiliki nilai tegangan maksimum 255,760 MPa dan nilai regangan maksimum 7,404% untuk bahan PLA, serta nilai tegangan maksimum 119,310 MPa dan nilai regangan maksimum 7,433% untuk bahan ABS, dimana nilai tersebut menyimpulkan bahan PLA dapat menerima beban yang lebih besar dibandingkan ABS. Kesimpulan dari penelitian ini bahwa pola truss cutout dapat meningkatkan elastisitas, dibuktikan dengan desain pada rib 3 yang memiliki deformasi elastis jika dibandingkan dengan wing rib fixed-wing dari penelitian terdahulu, dengan displacement maksimum 30,321 mm untuk bahan PLA, dan 34,239 mm untuk bahan ABS, dari displacement maksimum wing rib penelitian terdahulu 27,067 mm (PLA) dan 19,732 mm (ABS) untuk topology 1, dan 26,875 mm (PLA) dan 26,751 mm (ABS) untuk topology 2.
===================================================================================================================================
The “fixed-wing” modelled wings do not always have the best aerodynamic performance during the full flight cycle, both during take-off, landing and cruising. Therefore, it is necessary to apply the adaptive morphing concept to achieve optimal aerodynamic performance during the flight, and increase the controllability of an UAV. Additive Manufacturing (AM) process has been used in various fields, including in the development of UAV’s to produce the complex geometries that capable for enhancing structural efficiency and aerodynamic performance. Morphing UAV wing rib printed with Fused Deposition Modelling (FDM) with Polylactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) as the base material will be tested numerically using ANSYS software to study the effect of geometry and type of filament material on stress, strain and strain energy distribution on the wing rib, and mechanical testing is carried out to verify the failure location based on the location of maximum stress and strain from the results of numerical tests at certain displacements. There are 3 wing rib designs that will be studied, with variations in the application of corrugated ribs, truss shapes with cutouts, and corrugated rib applications from truss cutout designs and will be compared with the previous designs. From the results of numerical testing validated by mechanical testing, it was found that rib 3 has a maximum stress value of 255,760 MPa and a maximum strain value of 7,404% for PLA material, and a maximum stress value of 119,310 MPa and a maximum strain value of 7,433% for ABS material, where these values are PLA is able to receive more stress than the ABS. The conclusion of this study is that the truss cutout pattern can increase elasticity, as evidenced by the design of rib 3 which has elastic deformation when compared to the fixed-wing wing rib from previous studies, with a maximum displacement of 30,321 mm for PLA material, and 34,239 mm for ABS material, from the previous study wing rib maximum displacement of 27,067 mm (PLA) and 19,732 mm (ABS) for topology 1, and 26,875 mm (PLA) and 26,751 (ABS) for topology 2.

Item Type: Thesis (Other)
Uncontrolled Keywords: ABS, PLA, Wing Rib
Subjects: T Technology > TP Chemical technology > TP1140 Polymers
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Kevin Atha Yusuf
Date Deposited: 06 Feb 2025 03:03
Last Modified: 06 Feb 2025 03:03
URI: http://repository.its.ac.id/id/eprint/118355

Actions (login required)

View Item View Item