Model Markov Switching Autoregressive dengan Time-Varying Parameter

Inayati, Syarifah (2025) Model Markov Switching Autoregressive dengan Time-Varying Parameter. Doctoral thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 7003211005-Dissertation.pdf] Text
7003211005-Dissertation.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2027.

Download (7MB) | Request a copy

Abstract

Data time series sering kali menunjukkan sifat nonlinier dan mengalami perubahan struktur, yang menambah kompleksitas dalam peramalan. Oleh karena itu, peramalan yang tepat dan akurat sangat penting untuk mendukung pengambilan keputusan strategis. Model Markov Switching Autoregressive (MSAR) adalah salah satu pendekatan populer untuk menangani perubahan struktur dengan membedakan berbagai regime, seperti pola transisi antara fase ekspansi dan resesi dalam siklus bisnis. Meskipun MSAR efektif untuk data dengan pola transisi yang konsisten dan dapat diprediksi, model ini umumnya diterapkan untuk monitoring process dan belum dioptimalkan untuk peramalan jangka panjang. Untuk data yang lebih kompleks, akurasi peramalan dapat ditingkatkan melalui kombinasi dengan model Time-Varying Parameter (TVP). Model TVP memungkinkan parameter berubah secara dinamis seiring waktu memberikan fleksibilitas tambahan dalam pemodelan data time series yang kompleks. Penelitian ini bertujuan untuk mengembangkan model Markov Switching Autoregressive dengan Time-Varying Parameter (MSAR-TVP), yang menggabungkan keunggulan MSAR dalam mendeteksi regime dengan kemampuan TVP untuk penyesuaian parameter dinamis. Estimasi parameter model dilakukan dengan menggunakan dua pendekatan, yaitu pendekatan klasik dan Bayesian. Pendekatan klasik dilakukan melalui metode Maximum Likelihood Estimation (MLE) yang diintegrasikan dengan Kim filter (kombinasi dari Kalman filter, Hamilton filter, dan Kim collapsing) dan dioptimalkan melalui algoritma Nelder-Mead. Sementara itu, pendekatan Bayesian menggunakan metode Markov Chain Monte Carlo (MCMC) dengan algoritma Gibbs sampling yang diintegrasikan dengan Kim filter. Model diuji pada dua dataset Produk Nasional Bruto (PNB) riil Amerika Serikat (AS) secara kuartalan dengan cakupan periode yang berbeda, yaitu Dataset 1 (1952–1986) yang relatif sederhana dan Dataset 2 (1947–2024) yang lebih kompleks. Pengujian dilakukan dengan membandingkan tiga model, yaitu model MSAR dengan pendekatan klasik (MSAR Klasik), MSAR-TVP dengan pendekatan klasik (MSAR-TVP Klasik), dan MSAR-TVP dengan pendekatan Bayesian (MSAR-TVP Bayesian). Hasil penelitian menunjukkan bahwa MSAR-TVP Klasik dan MSAR-TVP Bayesian secara konsisten lebih unggul dibandingkan dengan model MSAR Klasik pada kedua dataset. Pada Dataset 1, MSAR-TVP Klasik mencapai akurasi tertinggi pada data in-sample dan out-of-sample dibandingkan model lainnya. Sementara itu, pada Dataset 2, MSAR-TVP Bayesian menunjukkan keunggulan signifikan pada data out-of-sample dibandingkan model lainnya, dan akurasi tinggi pada data in-sample. Distribusi error yang lebih stabil pada pendekatan Bayesian mendukung keunggulannya dalam peramalan data dengan kompleksitas tinggi. Model MSAR-TVP Bayesian mampu menangkap dinamika transisi regime, seperti resesi awal 1980-an, resesi 1990, pecahnya gelembung teknologi 2001, krisis keuangan global 2008, dan pandemi COVID-19 pada tahun 2020. Peramalan dua tahun ke depan (Q2 2024–Q1 2026) menunjukkan tren kenaikan konsisten dalam fase ekspansi. Model ini diharapkan berkontribusi pada pengambilan keputusan ekonomi yang lebih baik melalui peramalan PNB riil AS yang akurat dan mendalam.
==================================================================================================================================
Time series data often exhibit nonlinear characteristics and structural changes, which add complexity to forecasting processes. Therefore, accurate and precise forecasting is crucial to support strategic decision-making. The Markov switching autoregressive (MSAR) model is one of the most popular approaches for addressing structural changes by distinguishing different regimes in data, such as transitions between expansion and recession phases in business cycles. Although MSAR is effective for data with consistent and predictable transition patterns, it is primarily applied to monitoring processes and has not yet been optimized for longterm forecasting. For more complex and dynamic data, forecasting accuracy can be enhanced by integrating the time-varying parameter (TVP) model, which allows parameters to change dynamically over time, providing additional flexibility for modeling complex time series data. This study aims to develop a Markov switching autoregressive model with time-varying parameters (MSAR-TVP), combining the strengths of MSAR in identifying regimes with the TVP model's capability for dynamic parameter adjustments. Parameter estimation was conducted using two approaches, namely the classical and Bayesian approach. The classical approach employed the maximum likelihood estimation (MLE) method integrated with the Kim filter (a combination of Kalman filter, Hamilton filter, and Kim collapsing) and optimized through the Nelder-Mead algorithm. Meanwhile, the Bayesian approach utilized Markov chain Monte Carlo (MCMC) methods with Gibbs sampling integrated with the Kim filter. The model was tested on two quarterly datasets of real gross national product (GNP) of the United States (U.S.) covering different periods: Dataset 1 (1952–1986), representing a relatively simple structure, and Dataset 2 (1947–2024), which is more complex. The evaluation compared three models: the classical MSAR model (Classical MSAR), the MSAR-TVP model with a classical approach (Classical MSAR-TVP), and the MSAR-TVP model with a Bayesian approach (Bayesian MSAR-TVP). The results showed that both the Classical MSAR-TVP and Bayesian MSAR-TVP models consistently outperformed the Classical MSAR model across both datasets. For Dataset 1, the Classical MSAR-TVP model achieved the highest accuracy for both in-sample and out-of-sample data compared to the other models. Meanwhile, for Dataset 2, the Bayesian MSAR-TVP model demonstrated significant superiority on out-of-sample data compared to other models, and it achieved high accuracy for in-sample data. The more stable error distribution of the Bayesian approach further supported its advantages in forecasting complex data. Additionally, the Bayesian MSAR-TVP model effectively captured regime transition dynamics, including major economic events such as the early 1980s recession, the 1990 recession, the 2001 dot-com bubble burst, the 2008 global financial crisis, and the 2020 COVID-19 pandemic. Forecasts for the next two years (Q2 2024–Q1 2026) indicate a consistent upward trend during the expansion phase. This model is expected to contribute to better economic decision-making by providing accurate and insightful forecasts of U.S. real GNP.

Item Type: Thesis (Doctoral)
Uncontrolled Keywords: analisis dan peramalan time series, Kim filter, Markov switching autoregressive, maximum likelihood estimation, pendekatan Bayesian, time-varying parameter
Subjects: H Social Sciences > HA Statistics
H Social Sciences > HA Statistics > HA30.3 Time-series analysis
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Statistics > 49001-(S3) PhD Thesis
Depositing User: Syarifah Inayati
Date Deposited: 06 Feb 2025 03:43
Last Modified: 06 Feb 2025 03:43
URI: http://repository.its.ac.id/id/eprint/118468

Actions (login required)

View Item View Item