Laily, Fitria Nur (2025) Pengaruh Penambahan Mikronutrien Kobalt Pada Proses Kontinyu Microbial Fuel Cell Dengan Bahan Baku Limbah Makanan. Doctoral thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
7008222009--Dissertation.pdf - Accepted Version Restricted to Repository staff only until 1 April 2027. Download (18MB) | Request a copy |
Abstract
Pemerintah terus mengupayakan tercapainya target energi baru terbarukan, yang berdasarkan kebijakan nasional Indonesia ditargetkan mencapai 31% pada tahun 2050. Microbial Fuel Cell (MFC) merupakan salah satu teknologi energi yang bersumber dari biomassa. Studi ini bertujuan untuk mengembangkan sistem MFC kontinyu dengan penambahan mikronutrien ion kobalt, yang dapat mempengaruhi metabolisme dan pertumbuhan bakteri Shewanella oneidensis MR-1. Limbah makanan yang digunakan sebagai substrat atau bahan baku mengandung bahan organik dengan minimal komposisi terdiri dari 28-30% glukosa, 1-3% protein, dan 1% lemak. Limbah makanan terlebih dahulu melalui proses pretreatment berupa proses hidrolisis menggunakan fungi Aspergillus oryzae, Aspergillus aculeatus, dan Candida rugosa selama 24 jam, selanjutnya dimasukkan kedalam sistem MFC, ditambahkan bakteri Shewanella oneidensis MR-1, mikronutrien ion kobalt, lumpur Sidoarjo, dan selanjutnya dilakukan pengukuran listrik. Pada studi ini, diamati terlebih dahulu pengaruh penambahan mikronutrien ion Kobalt terhadap kinetika reaksi biokimia dan elektrokimia pada sistem batch MFC. Diperoleh nilai parameter kinetika reaksi biokimia KM 0,48 sebesar dan rmax sebesar 1,41 berdasarkan persamaan Langmuir dengan metode pendekatan Lineweaver Burk. Selain itu juga didapatkan nilai parameter reaksi elektrokimia, yaitu koefisien transfer elektron (ɑ) sebesar 0,386 dan konstanta elektroda (Ks) sebesar 0,435, dihasilkan berdasarkan persamaan Langmuir dan Buttler-Volmer, dengan metode pendekatan menggunakan teori Theofillos dan Zhao. Selanjutnya dari kinetika reaksi tersebut, dapat diaplikasikan pada sistem kontinyu dengan menggunakan volume 9,22 liter untuk reaktor kontinyu single chamber; 3,062 liter untuk tiap reaktor kontinyu stack seri; dan 3,08 liter untuk tiap reaktor kontinyu stack paralel pada perbandingan substrat limbah makanan banding air 4:1 (v/v). Sistem MFC kontinyu single chamber, kontinyu stack seri, dan kontinyu stack paralel masing-masing dioperasikan selama 6.000 menit. Sistem MFC kontinyu single chamber menghasilkan total tegangan 5.426 volt, total kuat arus 533 ampere (atau rapat arus 23,38 A/m2 ), dan total power density 237.797 W/m2 . Sedangkan sistem MFC kontinyu stack seri menghasilkan total tegangan 27.506 volt, total kuat arus 1.599 ampere (atau rapat arus 70,13 A/m2 ), dan total power density 928.022 W/m2 . Sistem MFC kontinyu stack parallel menghasilkan total tegangan 27.902 volt, total kuat arus 1.808 ampere (atau rapat arus 80,36 A/m2 ), dan total power density 1.242.408 W/m2 . Berdasarkan hasil tersebut, sistem MFC kontinyu stack paralel yang memperoleh hasil listrik optimal dibandingkan sistem MFC kontinyu lainnya. Selanjutnya, studi ini dilakukan optimasi dengan memvariasikan flowrate substrat menggunakan sistem MFC kontinyu stack paralel, yaitu pada 200, 400, 600, 800, dan 1.000 mL/menit. Hasilnya menunjukkan bahwa pada flowrate 400 mL/menit menghasilkan energi listrik tertinggi, yaitu total tegangan 60.145 volt, total kuat arus 1.799 Ampere, dan total power density 2.609.506 W/m2 . Setelah dilakukan optimasi, selanjutnya energi yang dihasilkan oleh MFC stack parallel disimpan pada power bank storage dengan kapasitas 20.000 mAh, rata-rata waktu pengisian selama 4 jam. Selain itu, energi dari MFC juga dimanfaatkan untuk menyalakan lampu LED 5, 10, dan 15 Watt, 100 V, mampu bertahan selama 6 jam. Berdasarkan hasil analisa ekonomi untuk penerapan MFC kontinyu scale-up 500 rumah warga mendapatkan IRR sebesar 27%, WACC 8,42%, BEP 22%, dan POT selama 4 tahun 12 bulan.
===================================================================================================================================
The government's ongoing efforts to achieve the renewable energy target, which is guided by Indonesia's national policy and aims to reach 31% by 2050, are noteworthy. Microbial Fuel Cell (MFC) technology, derived from biomass, is a promising energy source. This study aims to develop a continuous MFC system with the incorporation of cobalt ion micronutrients, which have the potential to influence the metabolism and growth of Shewanella oneidensis MR-1 bacteria. The substrate or raw material used in this study is food waste, which contains organic matter with a minimum composition consisting of 28-30% glucose, 1-3% protein, and 1% fat. The food waste was subjected to a pretreatment process involving hydrolysis, utilizing Aspergillus oryzae, Aspergillus aculeatus, and Candida rugosa fungi for a duration of 24 hours. Subsequent to this, the pretreated food waste was introduced into the MFC system, where it was inoculated with Shewanella oneidensis MR-1 bacteria, cobalt ion micronutrients, and Sidoarjo sludge. Electrical measurements were then conducted to assess the system's functionality. This study signified the inaugural observation of the effect of cobalt ion micronutrient addition on the kinetics of biochemical and electrochemical reactions in the MFC batch system. The value of biochemical reaction kinetics parameter KM was determined to be 0.48, and rmax was determined to be 1.41, based on the Langmuir equation with the Lineweaver-Burk approach method. Moreover, the values of the electrochemical reaction parameters, namely the electron transfer coefficient (ɑ) of 0.386 and the electrode constant (Ks) of 0.435, were obtained based on the Langmuir and Butler-Volmer equations, with the approach method using the theory of Theofillos and Zhao. Furthermore, the reaction kinetics can be applied to a continuous system using a volume of 9.22 liters for a single chamber continuous reactor; 3.062 liters for each series stack continuous reactor; and 3.08 liters for each parallel stack continuous reactor at a food waste to water substrate ratio of 4:1 (v/v). The single chamber continuous, series stack continuous, and parallel stack continuous MFC systems were each operated for 6,000 minutes.The single chamber continuous MFC system produced a total voltage of 5,426 volts, a total current strength of 533 amperes (or a current density of 23.38 A/m2), and a total power density of 237,797 W/m2. In contrast, the series stack continuous MFC system yielded a total voltage of 27,506 volts, a total current strength of 1,599 amperes (or a current density of 70.13 A/m2), and a total power density of 928,022 W/m2. In contrast, the parallel stack continuous MFC system generates a total voltage of 27,902 volts, a total current strength of 1,808 amperes (or a current density of 80.36 A/m2), and a total power density of 1,242,408 W/m2. Comparison of these results indicates that the parallel stack continuous MFC system achieves the optimal electrical output among other continuous MFC systems. Furthermore, the efficacy of the study was optimized by varying the substrate flowrate using a parallel stack continuous MFC system, namely at 200, 400, 600, 800, and 1,000 mL/min. The findings indicate that the flowrate of 400 mL/min yields the maximum electrical energy, as evidenced by the total voltage of 60.145 volts, the total current strength of 1.799 amperes, and the total power density of 2.609.506 W/m2 . Following the optimization process, the energy yield of the parallel stack MFC is stored in a power bank with a capacity of 20,000 mAh, exhibiting an average charging duration of 4 hours.Additionally, the energy derived from the MFC is employed to power 5, 10, and 15 Watt, 100 V LED lights, with a operational lifespan of 6 hours. A comprehensive economic analysis was conducted for the implementation of continuous MFC scale-up for 500 households, and the results indicated an internal rate of return (IRR) of 27%, a weighted average cost of capital (WACC) of 8.42%, a break-even point (BEP) of 22%, and a payback period (POT) of 4 years and 12 months.
Item Type: | Thesis (Doctoral) |
---|---|
Uncontrolled Keywords: | Kobalt, kontinyu, limbah makanan, MFC, paralel, Cobalt, continuous, food waste, MFC, parallel |
Subjects: | T Technology > TP Chemical technology > TP248.3 Biochemical engineering. Bioprocess engineering |
Divisions: | Faculty of Industrial Technology and Systems Engineering (INDSYS) > Chemical Engineering > 24001-(S3) PhD Thesis |
Depositing User: | Fitria Nur Laily |
Date Deposited: | 11 Feb 2025 00:53 |
Last Modified: | 11 Feb 2025 00:53 |
URI: | http://repository.its.ac.id/id/eprint/118614 |
Actions (login required)
![]() |
View Item |