Silviana, Dina Rika (2025) Aalisis Struktur Grafena Oksida Tereduksi Berlubang Berbasis Biomassa dengan Variasi Jenis dan Konsentrasi Zat Aktivator. Masters thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
6001231009-Master_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 April 2027. Download (4MB) | Request a copy |
Abstract
Bio-rGO merupakan rGO yang disintesis dari biomassa salah satunya serbuk sabut kelapa sehingga proses produksi menjadi ramah lingkungan. Melalui metode pirolisis tunggal, serbuk sabut kelapa bertransformasi menjadi bio-rGO yang masih ditemukan fasa sekunder. Pada penelitian ini dilakukan proses etsa kimiawi bio-rGO hasil pirolisis untuk menginduksi terbentuknya lubang serta menghilangkan fasa sekunder dengan variasi jenis dan konsentrasi zat aktivator. Penambahan zat aktivator bertujuan membentuk lubang pada permukaan rGO. BG-HO dan BG-HN berhasil menghilangkan fasa sekunder, sedangkan BG-K masih terdapat residu kalium. Hasil FTIR membuktikan bahwa jenis aktivator dapat mempengaruhi tingkat efektifitas penghilangan gugus fungsi oksigen. Analisis SEM-EDX menunjukkan BG-K menghasilkan alglomerasi lebih besar dari pada BG-HO dan BG-HN. Rasio intensitas ID/IG dan I2D/IG menunjukkan semua jenis dan konsentrasi aktivator mengandung sejumlah cacat dan multilayer. Analisis TEM memberikan informasi diameter rata-rata lubang BG-HO 3, BG-HN 3, BG-K 3 berturut-turut ~35,4; ~16,3; dan ~9,3 nanometer. Analisis isoterm BET BG-HO 3 menghasilkan luas permukaan spesifik paling tinggi. Zat aktivator H₂O₂ menjadi agen reduksi paling efektif dalam membentuk lubang tanpa merusak kerangka karbon secara signifikan sehingga berpotensi menjadi elektroda penyimpanan energi.
===================================================================================================================================
Bio-rGO is rGO synthesized from biomass, one of which is coconut husk powder so that the production process becomes environmentally friendly. Through a single pyrolysis method, coconut husk powder is transformed into bio-rGO which is still found in secondary phases. In this study, the chemical etching process of bio-rGO from pyrolysis was carried out to induce the formation of holes and remove secondary phases by varying the type and concentration of activator substances. Adding an activator substance aims to form holes on the surface of rGO. BG-HO and BG-HN successfully removed the secondary phase, while BG-K contained potassium residue. FTIR results prove that the type of activator can affect the effectiveness of oxygen functional group removal. SEM-EDX analysis showed that BG-K produced greater agglomeration than BG-HO and BG-HN. ID/IG and I2D/IG intensity ratios showed all activator types and concentrations contained several defects and multilayers. TEM analysis provided information on the average diameter of holes of BG-HO 3, BG-HN 3, and BG-K 3 of ~35.4; ~16.3; and ~9.3 nanometres, respectively. BET isotherm analysis of BG-HO 3 resulted in the highest specific surface area. The activator H₂O₂ is the most effective reduction agent in forming holes without significantly damaging the carbon skeleton, giving it the potential to become an energy storage electrode.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | Activator, Bio-rGO, Cocopeat, Chemical Etching, HrGO. Aktivator, Bio-rGO, Serbuk Sabut Kelapa, Etsa Kimia, HrGO. |
Subjects: | Q Science > QC Physics > QC610.3 Electric conductivity |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Physics > 45101-(S2) Master Thesis |
Depositing User: | Silviana Dina Rika |
Date Deposited: | 14 Feb 2025 06:30 |
Last Modified: | 14 Feb 2025 06:30 |
URI: | http://repository.its.ac.id/id/eprint/118740 |
Actions (login required)
![]() |
View Item |