Nugraha, Syechu Dwitya (2025) Penentuan Letak Dan Kapasitas Optimal Stasiun Pengisian Kendaraan Listrik Umum Pada Jaringan Distribusi Dan Pemanfaatan Kendaraan Listrik sebagai Penyimpan Daya Bergerak. Doctoral thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
7022222011-Dissertation.pdf Restricted to Repository staff only Download (5MB) | Request a copy |
Abstract
Integrasi stasiun pengisian kendaraan listrik (SPKLU) dan pembangkit listrik terdistribusi (DG) ke dalam jaringan distribusi menjadi isu penting dalam sistem tenaga modern. Seiring dengan meningkatnya jumlah kendaraan listrik, perencanaan yang matang terhadap letak dan kapasitas SPKLU menjadi sangat krusial. Pemasangan SPKLU yang dilakukan secara acak dapat menimbulkan berbagai masalah dalam jaringan distribusi, seperti gangguan tegangan, penurunan kualitas daya, serta peningkatan rugi – rugi daya. Sebagai solusi mengatasi permasalahan tersebut, penelitian ini mengembangkan metode optimasi hybrid genetic algorithm-modified salp swarm algorithm (HGAMSSA). HGAMSSA merupakan kombinasi dari genetic algorithm (GA) dan modified salp swarm algorithm (MSSA). Metode ini diintegrasikan dengan perhitungan optimal power flow (OPF) berbasis Newton-Raphson. Pengujian performa HGAMSSA menggunakan jaringan distribusi IEEE 33 bus 20 kV yang telah dimodifikasi. Selain itu, untuk aplikasi lebih kompleks, HGAMSSA digunakan untuk mendesain sebuah sistem integrasi SPKLU dan rooftop PV pada jaringan distribusi di kota Metropolitan, Surabaya, Indonesia. Dalam penelitian ini, tiga skenario diterapkan untuk menentukan letak dan kapasitas SPKLU. Pada skenario pertama, SPKLU terdiri dari charger level 1, 2, dan 3 dengan integrasi DG. Pada skenario kedua, SPKLU hanya terdiri dari charger level 2 dan 3 dengan integrasi DG. Sementara itu, skenario ketiga hanya mempertimbangkan charger level 3 dengan integrasi DG. Hasil penelitian ini menunjukkan bahwa metode HGAMSSA mampu mengoptimalkan peletakkan SPKLU dengan kinerja yang lebih baik dibandingkan metode lainnya. HGAMSSA menghasilkan rugi – rugi daya terbaik sebesar 0,15715 MW, lebih rendah dibandingkan metode GA, PSO, SSA, dan MPSO. Dengan populasi 100, HGAMSSA mencapai iterasi optimal pada iterasi ke-5, lebih cepat dibandingkan MPSO (iterasi ke-13) dan SSA (iterasi ke-17). Untuk populasi 50 dan 20, hanya HGAMSSA yang berhasil mencapai solusi optimal. Selain itu, pemanfaatan jaringan dapat dioptimalkan hingga 79,00% (skenario 1), 75,53% (skenario 2), dan 76,37% (skenario 3) dalam mode G2V, dibandingkan dengan beban dasar 29,46%. Dalam mode V2G, energi yang disuplai oleh kendaraan listrik melalui SPKLU mencapai 0,91 MWh, sementara rooftop PV menyuplai 10,036 MWh ke jaringan.
================================================================================================================================
Integration of electric vehicle charging stations (EVCS) and distributed power generation (DG) into the distribution network is an important issue in modern power systems. As the number of electric vehicles increases, careful planning of the location and capacity of EVCS becomes crucial. Random installation of EVCS can cause various problems in the distribution network, such as voltage disturbances, decreased power quality, and increased power losses.
As a solution to overcome these problems, this study develops a hybrid genetic algorithm-modified salp swarm algorithm (HGAMSSA) optimization method. HGAMSSA is a combination of genetic algorithm (GA) and modified salp swarm algorithm (MSSA). This method is integrated with the calculation of optimal power flow (OPF) based on Newton-Raphson. The performance testing of HGAMSSA uses a modified IEEE 33 bus 20 kV distribution network. In addition, for more complex applications, HGAMSSA is used to design an integration system of EVCS and rooftop PV on the distribution network in the Metropolitan city of Surabaya, Indonesia. In this study, three scenarios are applied to determine the size and location of SPKLU. In the first scenario, EVCS consists of level 1, 2, and 3 chargers with DG integration. In the second scenario, EVCS only consists of level 2 and 3 chargers with DG integration. Meanwhile, the third scenario only considers charger level 3 with DG integration. The results of this study indicate that the HGAMSSA method can optimize the placement of SPKLU with better performance compared to other methods. HGAMSSA produces the best power losses of 0.15715 MW, lower than the GA, PSO, SSA, and MPSO methods. With a population of 100, HGAMSSA reaches the optimal iteration at the 5th iteration, faster than MPSO (13th iteration) and SSA (17th iteration). For populations of 50 and 20, only HGAMSSA successfully reaches the optimal solution. In addition, network utilization can be optimized up to 79.00% (scenario 1), 75.53% (scenario 2), and 76.37% (scenario 3) in G2V mode, compared to the base load of 29.46%. In V2G mode, the energy supplied by electric vehicles through EVCS reaches 0.91 MWh, while rooftop PV supplies 10.036 MWh to the grid.
Item Type: | Thesis (Doctoral) |
---|---|
Uncontrolled Keywords: | stasiun pengisian kendaraan listik umum, kendaraan listrik, pembangkit tersebar, hybrid genetic algorithm – modified salp swarm algorithm (HGAMSSA), optimasi multi kriteria, letak optimal, kapasitas optimal. ================================================================================================== electric vehicle charging station, electric vehicle, distributed generation, hybrid genetic algorithm-modified salp swarm algorithm (HGAMSSA), multi – objective functions, optimal placement, optimal sizing. |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK3030 Electric power distribution systems T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL220 Electric vehicles and their batteries, etc. T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL220.5 Battery charging stations (Electric vehicles) |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20001-(S3) PhD Thesis |
Depositing User: | Syechu Dwitya Nugraha |
Date Deposited: | 18 Jun 2025 08:27 |
Last Modified: | 18 Jun 2025 08:44 |
URI: | http://repository.its.ac.id/id/eprint/119207 |
Actions (login required)
![]() |
View Item |