Alim, Alfan and Hafizd, Fadhil Muhammad (2024) Analisis Angka Kecelakaan lalu lintas pada Waktu Tertentu Berdasarkan Jenis Pekerjaan Menggunakan Metode K-Means Clustering: Studi kasus di Jawa Timur. Project Report. [s.n.], [s.l.]. (Unpublished)
![]() |
Text
5006211014_5006211043-Project_Report.pdf - Accepted Version Restricted to Repository staff only Download (3MB) | Request a copy |
Abstract
Penelitian ini bertujuan untuk menganalisis angka kecelakaan lalu lintas di Provinsi Jawa Timur berdasarkan jenis pekerjaan korban dan waktu kejadian, menggunakan metode K-Means Clustering. Data yang digunakan merupakan data sekunder dari PT Jasa Raharja Cabang Utama Jawa Timur tahun 2023, dengan variabel profesi seperti buruh/petani, karyawan swasta, wiraswasta, pelajar/mahasiswa, ibu rumah tangga, serta TNI/Polri. Tahapan analisis meliputi statistika deskriptif, penentuan jumlah cluster optimal menggunakan metode elbow, dan penerapan algoritma K-Means untuk pengelompokan. Hasil penelitian menunjukkan bahwa waktu kejadian kecelakaan dapat dikelompokkan menjadi tiga cluster: cluster rendah, sedang, dan tinggi. Cluster dengan tingkat kecelakaan tertinggi terjadi pada jam 06.00–08.59 WIB, didominasi oleh korban berprofesi wiraswasta. Uji ANOVA menunjukkan bahwa seluruh variabel pekerjaan memberikan kontribusi signifikan dalam pembentukan cluster. Penelitian ini memberikan wawasan yang berguna dalam memahami pola kecelakaan lalu lintas dan dapat dijadikan dasar untuk pengambilan kebijakan preventif oleh pihak terkait.
=====================================================================================================================================
This study aims to analyze traffic accident rates in East Java Province based on victims' occupations and the time of occurrence using the K-Means Clustering method. The data used is secondary data obtained from PT Jasa Raharja Cabang Utama Jawa Timur in 2023, focusing on variables such as laborers/farmers, private employees, entrepreneurs, students, housewives, and military/police personnel. The analysis stages include descriptive statistics, determination of the optimal number of clusters using the elbow method, and the application of the K-Means algorithm for grouping. The results show that accident times can be grouped into three clusters: low, medium, and high. The highest accident cluster occurred between 06.00–08.59 AM and was dominated by self-employed victims. ANOVA test results indicate that all occupational variables significantly contribute to cluster formation. This study offers valuable insights into traffic accident patterns and may serve as a basis for preventive policy recommendations by relevant stakeholders.
Item Type: | Monograph (Project Report) |
---|---|
Uncontrolled Keywords: | ANOVA, cluster analysis, East Java, K-Means clustering, occupation types, traffic accidents, analisis cluster, ANOVA, Jawa Timur, jenis pekerjaan, K-Means clustering, kecelakaan lalu lintas |
Subjects: | H Social Sciences > H Social Sciences (General) Q Science T Technology > T Technology (General) |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Actuaria > 94203-(S1) Undergraduate Thesis |
Depositing User: | Alfan Alim |
Date Deposited: | 10 Jul 2025 02:22 |
Last Modified: | 10 Jul 2025 02:22 |
URI: | http://repository.its.ac.id/id/eprint/119528 |
Actions (login required)
![]() |
View Item |