Jasir, Abdullah Nasih (2025) Deteksi Klasifikasi Gambar Makanan Nabati untuk Persyaratan Sertifikasi Halal. Project Report. [s.n.], [s.l.]. (Unpublished)
![]() |
Text
5025211111-Project_Report.pdf - Accepted Version Restricted to Repository staff only Download (666kB) | Request a copy |
Abstract
Penelitian ini bertujuan untuk mengembangkan sistem klasifikasi gambar makanan nabati yang berkaitan dengan kebutuhan sertifikasi halal. Sistem ini dibangun menggunakan beberapa arsitektur pre-trained, seperti MobileNet, Inception, ResNet, dan EfficientNet. Pengujian dilakukan dalam tiga skenario, yaitu penggunaan base model, fine-tuning, dan hyperparameter tuning. Data set berisi gambar makanan nabati yang telah dikategorikan berdasarkan kebutuhan sertifikasi halal. Hasil menunjukkan bahwa MobileNet dan Inception memberikan akurasi terbaik, terutama setelah melalui proses fine-tuning. Sebaliknya, ResNet dan EfficientNet menunjukkan performa yang kurang optimal tanpa
penyesuaian lebih lanjut. Temuan ini menunjukkan bahwa pemilihan arsitektur dan metode pelatihan berpengaruh signifikan terhadap akurasi model.
======================================================================================================================================
This study aims to develop a plant-based food image classification system relevant to halal certification requirements. The system was built using several pre-trained architectures, including MobileNet, Inception, ResNet, and EfficientNet. Testing was conducted in three scenarios: base model use, fine-tuning, and hyperparameter tuning. The dataset contained images of plant-based foods categorized based on their halal certification requirements. The results showed that MobileNet and Inception provided the best accuracy, especially after fine-tuning. Conversely, ResNet and EfficientNet performed less than optimally without further adjustment. These findings indicate that the choice of architecture and training method significantly influences model accuracy
Item Type: | Monograph (Project Report) |
---|---|
Uncontrolled Keywords: | Fine-Tuned, Halal, Hyperparameter Tuning, Klasifikasi Gambar, Transformer, Image Classification |
Subjects: | T Technology > T Technology (General) |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Informatics Engineering > 55201-(S1) Undergraduate Thesis |
Depositing User: | Abdullah Nasih Jasir |
Date Deposited: | 14 Jul 2025 04:09 |
Last Modified: | 14 Jul 2025 04:09 |
URI: | http://repository.its.ac.id/id/eprint/119676 |
Actions (login required)
![]() |
View Item |