Prakasa, Mohamad Almas (2025) Perbaikan Stabilitas Sistem Tenaga Listrik Melalui Pengaturan Power System Stabilizer Dan Virtual Inertia Control (PSS-VIC) Berbasis Kecerdasan Artifisial. Doctoral thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
7022222015-Doctoral.pdf - Accepted Version Restricted to Repository staff only Download (18MB) | Request a copy |
Abstract
Perbaikan stabilitas Sistem Tenaga Listrik (STL) modern menjadi krusial akibat integrasi antara STL dengan sistem generator konvensional dan STL dengan sistem Energi Baru dan Terbarukan (EBT) yang tidak memiliki pengaturan stabilitas. Di sisi STL dengan sistem generator konvensional, stabilitas dapat diperbaiki melalui pengaturan Power System Stabilizer (PSS). Sedangkan di sisi STL dengan sistem EBT, stabilitas dapat diperbaiki dengan rekayasa inersia semu (Virtual Inertia, VI) melalui pengaturan operasi kerja inverter dan sistem media penyimpanan energi (Energy Storage, ES) yang diatur menggunakan VI Control (VIC). Namun, belum ada penelitian yang membahas pengaturan PSS dan VIC secara bersamaan. Pada disertasi ini, pengaturan PSS-VIC berbasis kecerdasan artifisial (Artificial Intelligence, AI) telah diusulkan sebagai solusi perbaikan stabilitas STL yang efektif dari sisi sistem generator konvensional dan sistem EBT. AI berbasis skema baru Harris Hawk Optimization (HHO) dengan Memory Saving Strategy (MSS) juga telah diusulkan untuk pengaturan PSS-VIC. Disertasi ini menggunakan model interkoneksi STL dua area Kundur untuk pengaturan stabilitas generator konvensional melalui PSS dengan standarisasi Institute of Electrical and Electronics Engineers (IEEE). Model ini dimodifikasi dengan mengintegrasikan sistem EBT berbasis sistem fotovoltaik (Photovoltaic, PV) dan sistem turbin angin (Wind Turbine, WT) di kedua area. Di samping itu, VIC yang telah dimodifikasi dengan Fractional Order Proportional Integral Derivative (FOPID) juga diintegrasikan. Disertasi ini juga menginvestigasi kecocokan performansi VIC dengan sistem ES dengan keunggulan kerapatan energi (Battery ES, BES) dan sistem ES dengan keunggulan kerapatan daya (Capacitor ES, CES dan Superconducting Magnetic ES, SMES). Skema baru HHO-MSS digunakan untuk menghitung parameter global PSS-VIC berdasarkan fungsi optimisasi faktor redaman dan rasio redaman yang digabungkan dengan menggunakan Teknik Skalarisasi Benson. Batasan rasio redaman yang diharapkan adalah 5% hingga 10%, sesuai dengan aturan jaring listrik (grid code) secara umum. Berdasarkan hasil pengujian, HHO-MSS menghasilkan kurva konvergensi, akurasi, dan konsistensi yang lebih baik dari algoritma konvensional yang seangkatan dengan HHO (Equillibrium Optimization Algorithm (EOA), Arithmetic Optimization Algorithm, dan Moth-Flame Optimization), algoritma yang dihibridasi secara konvensional (HHO-EOA berbasis iterasi dan HHO-EOA berbasis populasi), dan algoritma yang 4 hingga 5 tahun lebih baru dari HHO (Electric Eel Foraging Optimization, Puma Optimization, dan Evolutionary Mating Algorithm). Di samping itu, modifikasi MSS dapat memperbaiki proporsi antara proses eksplorasi dan eksploitasi pada HHO secara signifikan. Oleh sebab itu, HHO-MSS telah dinilai layak untuk diimplementasikan pada pengaturan PSS-VIC. Pengaturan PSS-VIC dilakukan pada kondisi simulasi yang bervariasi, meliputi perubahan tingkat beban listrik kecil dan dinamis, tingkat inersia STL tinggi dan rendah, dan tingkat penetrasi daya luaran rendah hingga tinggi dari sistem PV dan sistem WT. Di samping itu, VIC dengan BES, dan CES, SMES menghasilkan efektivitas yang berbeda pada kondisi simulasi yang bervariasi. Berdasarkan hasil yang telah ditabulasi, HHO-MSS memeroleh parameter global PSS-VIC dengan rasio redaman sebesar 9,94% hingga 9,96%, sesuai dengan aturan jaring listrik. Simulasi domain waktu dan analisis statistik menunjukkan bahwa PSS-VIC berbasis HHO-MSS menghasilkan perbaikan tertinggi pada aspek nadir frekuensi, laju perubahan frekuensi (Rate of Change of Frequency, RoCoF), deviasi maksimum (overshoot dan undershoot), dan waktu stabilisasi (settling time) di respons frekuensi, sudut daya, tegangan, dan transfer daya antara area. Di samping itu, galat (error) pada respons-respons STL yang dihitung menggunakan berbagai indeks performansi juga menunjukkan bahwa PSS-VIC berbasis HHO-MSS memeroleh potensi pengurangan susut daya (power losses) mencapai 51,57% hingga 89,73%, lebih baik dari PSS-VIC berbasis algoritma lainnya. Konklusi dari disertasi ini adalah pengaturan PSS-VIC berbasis HHO-MSS telah menawarkan perbaikan stabilitas STL secara efektif dengan skalabilitas yang luas dan sesuai dengan performansi yang diharapkan dari aturan jaring listrik. Disertasi ini sejalan dengan peta jalan Pusat Studi Energi dan Sumber Daya Mineral ITS dengan topik Smart Grid System. Disertasi ini juga mendukung Sustainable Development Goals (SDGs) Nomor 7, yaitu Energi Bersih dan Terjangkau, yang berfokus untuk memastikan akses universal terhadap energi yang terjangkau, andal, berkelanjutan, dan modern untuk semua manusia.
===========================================================================================================================================
Improving the stability of modern electrical power systems has become crucial due to the integration between conventional generator systems and Renewable Energy Systems (RES) that lack built-in stability control. On the conventional generator systems side, stability can be improved through the tuning of Power System Stabilizers (PSS). Meanwhile, on the RES side, stability can be improved by emulating Virtual Inertia (VI) through controlling inverter operation and Energy Storage (ES) systems, which are managed using VI Control (VIC). However, no research has yet coordinating PSS and VIC. This dissertation proposes an Artificial Intelligence (AI)-based PSS-VIC as an effective solution to improve electricacl power system stability from both conventional generator and RES sides. A new scheme of Harris Hawk Optimization with Memory Saving Strategy (HHOMSS) is also proposed for coordinating PSS-VIC. This dissertation uses the interconnected two-area Kundur electrical power system model with PSS, standardized by the Institute of Electrical and Electronics Engineers (IEEE). This model is modified by integrating RES based on Photovoltaic (PV) and Wind Turbine (WT) systems in both areas. Additionally, VIC modified with Fractional Order Proportional Integral Derivative (FOPID) is also incorporated. This dissertation also investigates the performance compatibility of VIC with ES systems featuring high energy density (Battery ES, BES) and high power density (Capacitor ES, CES and Superconducting Magnetic ES, SMES). The novel HHO-MSS scheme is used to optimize global PSS-VIC parameters based on combined damping factor and damping ratio objective functions using Benson Scalarization Technique. The expected damping ratio constraints range from 5% to 10%, in accordance with common grid code requirements. Based on testing results, HHO-MSS demonstrates better convergence curves, accuracy, and consistency compared to conventional algorithms of the same generation as HHO (Equilibrium Optimization Algorithm (EOA), Arithmetic Optimization Algorithm, and Moth-Flame Optimization), conventionally hybridized algorithms (iteration-based and population-based HHO-EOA), and algorithms that are 4 to 5 years newer than HHO (Electric Eel Foraging Optimization, Puma Optimization, and Evolutionary Mating Algorithm). Furthermore, the MSS modification significantly improves the balance between exploration and exploitation in HHO. Therefore, HHO-MSS is believed suitable for implementation in coordinating PSS-VIC. PSS-VIC coordination is performed under various simulation conditions, including small and dynamic changes in electrical load, high and low inertia levels, and low to high output power penetration from PV and WT systems. Additionally, VIC combined with BES, CES, and SMES shows different effectiveness under these varying simulation conditions. The tabulated results show that HHO-MSS obtains global PSS-VIC parameters with damping ratios between 9.94% and 9.96%, complying with the common grid codes. Time domain simulations and statistical analyses reveal that HHO-MSS-based PSS-VIC achieves the highest improvements in frequency nadir, Rate of Change of Frequency (RoCoF), maximum deviations (overshoot and undershoot), and settling time in frequency, power angle, voltage, and inter-area power transfer responses. Moreover, errors in electrical power systems responses calculated using various performance indices indicate that HHOMSS-based PSS-VIC can reduce power losses by 51.57% to 89.73%,
outperforming PSS-VIC with other algorithms. The conclusion of this dissertation is that PSS-VIC coordination using HHO-MSS offers effective stability improvement with broad scalability and meets expected performance according to grid codes. This dissertation aligns with the roadmap of the ITS Research Center for Energy and Mineral Resources Studies on Smart Grid Systems. It also supports Sustainable Development Goals (SDGs) number 7, Clean and Affordable Energy, which focuses on ensuring universal access to affordable, reliable, sustainable, and modern energy for all.
Item Type: | Thesis (Doctoral) |
---|---|
Uncontrolled Keywords: | energi baru dan terbarukan, harris hawk optimization, kecerdasan artifisial, stabilitas sistem tenaga listrik, power system stabilizer, virtual inertia control, artificial intelligence, electrical power system stability, harris hawk optimization, power system stabilizer, renewable energy source, virtual inertia control. |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1007 Electric power systems control T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1010 Electric power system stability. Electric filters, Passive. |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20001-(S3) PhD Thesis |
Depositing User: | Mohamad Almas Prakasa |
Date Deposited: | 17 Jul 2025 07:35 |
Last Modified: | 17 Jul 2025 07:35 |
URI: | http://repository.its.ac.id/id/eprint/119903 |
Actions (login required)
![]() |
View Item |