Ramadhanni, Rizky Fitria (2025) Analisis Multitemporal Konsentrasi SO₂ di Atas Gunung Semeru Berbasis Data Citra Satelit Sentinel-5P Dengan Platform Google Earth Engine. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5016211105-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (5MB) | Request a copy |
Abstract
Gunung Semeru merupakan salah satu gunung api aktif di Indonesia yang secara periodik mengalami erupsi dan melepaskan gas berbahaya seperti Sulfur Dioksida (SO₂) ke atmosfer. Gas ini berpengaruh besar terhadap kualitas udara, kesehatan, dan lingkungan, sehingga perlu dipantau secara berkala. Penelitian ini bertujuan untuk menganalisis tren dan sebaran konsentrasi SO₂ di atas Gunung Semeru secara multitemporal dari tahun 2019 hingga 2024 menggunakan citra satelit Sentinel-5P dengan platform Google Earth Engine (GEE). Metode yang digunakan meliputi pemrosesan data citra level-3(OFFL), konversi satuan ke µg/m³, visualisasi spasial dalam bentuk peta dan grafik, serta validasi dengan data sekunder seperti erupsi PVMBG, Google Trends, dan data arah angin. Hasil menunjukkan pola peningkatan konsentrasi SO₂ yang konsisten dengan aktivitas erupsi besar pada tahun 2020, 2021, dan 2023, serta persebaran spasial yang dipengaruhi oleh arah angin dominan. Selain itu, dibangun pula aplikasi interaktif berbasis GEE yang dapat digunakan untuk monitoring publik dan instansi. Kesimpulan dari penelitian ini adalah bahwa pemanfaatan citra Sentinel-5P melalui GEE terbukti efektif dalam mendeteksi dan memvisualisasikan konsentrasi SO₂ secara spasial-temporal, serta memiliki potensi besar sebagai alat mitigasi bencana berbasis teknologi penginderaan jauh.
===========================================================================================================================================
Mount Semeru is one of the active volcanoes in Indonesia that periodically erupts and releases hazardous gases such as Sulfur Dioxide (SO₂) into the atmosphere. This gas significantly affects air quality, health, and the environment, thus requiring regular monitoring. This study aims to analyze the trends and spatial distribution of SO₂ concentrations over Mount Semeru from 2019 to 2024 using Sentinel-5P satellite imagery and the Google Earth Engine (GEE) platform. The methodology involves processing level-3 (OFFL) satellite data, converting concentration units to µg/m³, generating spatial visualizations in the form of maps and graphs, and validating the results using secondary data such as eruption records from PVMBG, Google Trends, and wind direction data. The results show a pattern of increased SO₂ concentration aligned with major eruptions in 2020, 2021, and 2023, with spatial distribution influenced by dominant wind directions. Additionally, an interactive application was developed using GEE, which can be utilized by both the public and relevant agencies for monitoring purposes. The study concludes that the use of Sentinel-5P imagery through GEE is effective in detecting and visualizing SO₂ concentrations spatio-temporally and holds significant potential as a disaster mitigation tool based on remote sensing technology.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | analisis multitemporal, Google Earth Engine, Gunung Semeru, mitigasi bencana, penginderaan jauh, Sentinel-5P, sulfur dioksida (SO₂), visualisasi spasial disaster mitigation, Google Earth Engine, Mount Semeru, multitemporal analysis, remote sensing, Sentinel-5P, spatial visualization, sulfur dioxide (SO₂). |
Subjects: | G Geography. Anthropology. Recreation > G Geography (General) > G70.212 ArcGIS. Geographic information systems. G Geography. Anthropology. Recreation > G Geography (General) > G70.217 Geospatial data G Geography. Anthropology. Recreation > G Geography (General) > G70.5.I4 Remote sensing |
Divisions: | Faculty of Civil, Planning, and Geo Engineering (CIVPLAN) > Geomatics Engineering > 29202-(S1) Undergraduate Thesis |
Depositing User: | Rizky Fitria Ramadhanni |
Date Deposited: | 17 Jul 2025 09:27 |
Last Modified: | 17 Jul 2025 09:27 |
URI: | http://repository.its.ac.id/id/eprint/119941 |
Actions (login required)
![]() |
View Item |