Analisis Area Sub-Urban Menggunakan Ekstraksi Tekstur dan Indeks Lahan Terbangun Citra SAR Sentinel-1 (Studi Kasus: Surabaya-Sidoarjo)

Fathimah, Farida Nuraini (2025) Analisis Area Sub-Urban Menggunakan Ekstraksi Tekstur dan Indeks Lahan Terbangun Citra SAR Sentinel-1 (Studi Kasus: Surabaya-Sidoarjo). Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6016241005-Master_Thesis.pdf] Text
6016241005-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (7MB) | Request a copy

Abstract

Kawasan perkotaan di Indonesia semakin pesat seiring urbanisasi yang memunculkan kawasan sub-urban dan fenomena urban sprawl, yaitu ekspansi kota yang tidak terkendali, menciptakan permukiman serta infrastruktur di wilayah nonperkotaan. Kawasan sub-urban merupakan wilayah transisi antara pusat kota dan pedesaan yang umumnya ditandai dengan pertumbuhan permukiman baru, meningkatnya konektivitas transportasi, serta pergeseran fungsi lahan dari agraris menjadi urban. Wilayah Surabaya Metropolitan Areas (SMAs), khususnya Kabupaten Sidoarjo menjadi contoh perkembangan sub-urbanisasi, dengan peningkatan signifikan pada laju pertumbuhan penduduk dibandingkan Kota Surabaya. Data BPS pada Desember 2023, jumlah penduduk di Kabupaten Sidoarjo tercatat 1,99 juta jiwa, dengan Kecamatan Taman memiliki jumlah penduduk tertinggi, yaitu 200.405 jiwa atau sekitar 10% dari total populasi Kabupaten Sidoarjo. Oleh karena itu, informasi akurat tentang distribusi spasial lahan terbangun sangat penting untuk diidentifikasi dan dianalisis. Teknologi SAR efektif memantau wilayah padat bangunan karena tidak terpengaruh cuaca dan pencahayaan. Penelitian ini mengombinasikan indeks lahan terbangun dengan PRISI (Piecewise Radar Impervious Surface Index) dan ekstraksi tekstur untuk mengidentifikasi distribusi dan karakteristik lahan terbangun di wilayah sub-urban. Hasil menunjukkan bahwa integrasi ekstraksi tekstur GLCM dan indeks lahan terbangun PRISI menggunakan citra SAR Sentinel-1 mampu meningkatkan akurasi distribusi built-up di wilayah suburban. Pendekatan modified PRISI dengan penyesuaian threshold menghasilkan peningkatan akurasi klasifikasi (OA 88,46%, kappa 0,77) dan menggambarkan distribusi spasial built-up dan non built-up secara lebih representatif. Kota Surabaya menunjukkan kepadatan built-up yang tinggi dan terencana, sedangkan Kabupaten Sidoarjo menampilkan sebaran yang lebih menyebar, dengan dominasi irregular built-up.
==================================================================================================================================
Urban areas in Indonesia are rapidly expanding due to urbanization, which has given rise to suburban regions and the phenomenon of urban sprawl, uncontrolled city expansion that leads to the development of settlements and infrastructure in non-urban areas. Suburban areas are transitional zones between city centers and rural regions, typically marked by new residential developments, increasing transportation connectivity, and land use shifts from agricultural to urban functions. The Surabaya Metropolitan Area (SMA), particularly Sidoarjo Regency, exemplifies this suburban growth, showing a significant increase in population growth compared to Surabaya City. According to BPS data from December 2023, the population of Sidoarjo Regency reached 1.99 million, with Taman District recording the highest population, at 200,405 people or about 10% of the regency's total population. Therefore, accurate information on the spatial distribution of builtup land is essential for identification and analysis. SAR technology is effective for monitoring densely built environments due to its insensitivity to weather and lighting conditions. This study combines the built-up land index using PRISI (Piecewise Radar Impervious Surface Index) with texture extraction to identify the distribution and characteristics of built-up land in suburban areas. The results show that integrating GLCM texture extraction with the PRISI index using Sentinel-1 SAR imagery improves the accuracy of built-up area distribution in suburban regions. The modified PRISI approach, through threshold adjustment, enhanced classification accuracy (OA 88.46%, kappa 0.77) and more accurately represented the spatial distribution of built-up and non-built-up areas. Surabaya City demonstrated a high and planned built-up density, while Sidoarjo Regencyexhibited a more dispersed pattern, dominated by irregular built-up areas

Item Type: Thesis (Masters)
Uncontrolled Keywords: Ekstraksi Tekstur, Lahan Terbangun, Penginderaan Jauh Aktif, Kawasan Sub-Urban, Texture Extraction, Built-Up Areas, Active Remote Sensing, Suburban Region
Subjects: G Geography. Anthropology. Recreation > G Geography (General) > G155.A55 Tourism and city planning
G Geography. Anthropology. Recreation > G Geography (General) > G70.212 ArcGIS. Geographic information systems.
G Geography. Anthropology. Recreation > G Geography (General) > G70.5.I4 Remote sensing
Divisions: Faculty of Civil, Planning, and Geo Engineering (CIVPLAN) > Geomatics Engineering > 29101-(S2) Master Thesis
Depositing User: Farida Nuraini Fathimah
Date Deposited: 18 Jul 2025 01:49
Last Modified: 18 Jul 2025 01:49
URI: http://repository.its.ac.id/id/eprint/119962

Actions (login required)

View Item View Item