Pengembangan Basis Data Pilot Dan Dashboard Analitik Untuk Data Potensi Dampak Lingkungan

Kartikasari, Gloria FJ (2025) Pengembangan Basis Data Pilot Dan Dashboard Analitik Untuk Data Potensi Dampak Lingkungan. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6032221037-Master_Thesis.pdf] Text
6032221037-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (6MB) | Request a copy

Abstract

Tuntutan keberlanjutan mendorong perusahaan menghitung potensi dampak lingkungan produk menggunakan metode Life Cycle Assessment (LCA). Sebagai konsultan, PT XYZ menghadapi tantangan penyimpanan data LCA yang tersebar dan tidak terorganisasi, sehingga analisis benchmarking dan rekomendasi berbasis data menjadi tidak efisien dan tidak terstandarisasi. wHal ini memperlambat kinerja perusahaan dalam memenuhi permintaan klien yang semakin meningkat. Penelitian ini bertujuan mengembangkan basis data pilot di Microsoft SQL Server yang mengintegrasikan data laporan LCA 2019–2024 untuk sektor minyak & gas dan konstruksi, serta mengembangkan dashboard analitik pada Power BI yang menampilkan analisis statistik deskriptif, analisis korelasi, dan K-Means clustering. Penelitian juga mengeksplorasi potensi pengembangan big data analysis dan machine learning di masa mendatang. Sebanyak 1.562 produk dari 509 perusahaan dikumpulkan pada basis data. Dashboard yang dikembangkan menunjukkan efektivitas dalam menampilkan pusat dan sebaran data, distribusi, frekuensi, deteksi anomali serta analisis korelasi dan clustering. Hasil korelasi pada sektor konstruksi mengindikasikan hubungan kuat (r>0,5) antara limbah berbahaya, tidak berbahaya, limbah radioaktif, penggunaan energi terbarukan, energi non-terbarukan, dan material sekunder dengan emisi pemanasan global (GWP), sedangkan limbah bahan bakar sekunder tidak signifikan. Clustering mengelompokkan empat grup negara berdasarkan tingkat emisi, menempatkan Indonesia pada kelompok emisi tertinggi, serta mengidentifikasi kategori produk metal dan semi-manufactured plastic sebagai kontributor emisi terbesar. Hasil ini menjadi dasar penentuan prioritas penurunan emisi bagi industri maupun skala nasional serta membantu memenuhi permintaan analisis klien dan meningkatkan daya saing perusahaan. Potensi pengembangan lanjutan mencakup perbaikan dashboard sesuai evaluasi pengguna, migrasi data internal perusahaan pada basis data, implementasi basis data pada server perusahaan, pengembangan dashboard pada sektor lain dan emisi GHG tingkat perusahaan, serta eksploriasi machine leraning untuk analisis prediksi dan mencari rekomendasi optimal untuk pengurangan emisi. Saran penelitian lanjutan meliputi pendetilan kategori produk baja, pemisahan dashboard berdasarkan pengguna, pembuatan panduan penggunaan, analisis tipe limbah, dan standarisasi nomenklatur data internal.
==================================================================================================================================
The push for sustainability issues is driving companies to calculate their products’ potential environmental impacts using Life Cycle Assessment (LCA). As a consultant, PT XYZ struggles with decentralized and unorganized LCA data storage, making benchmarking analyses and data-based recommendations inefficient and unstandardized. This slows the firm’s ability to meet the growing demand for LCA consulting. This study aims to build a pilot database on Microsoft SQL Server that integrates data from 2019–2024 LCA reports in the oil & gas and construction sectors, and to create a Power BI analytics dashboard showing descriptive statistics, correlation analysis, and K-Means clustering. The research also explores future possibilities for big data analytics and machine learning. In total, 1,562 products from 509 companies were loaded into pilot database. The developed dashboard shows effectiveness in presenting central tendency and dispersion, distributions, frequencies, anomaly detection, correlation and clustering analyses. In the construction sector, correlation results showed a strong relationship (r > 0.5) between hazardous waste, non-hazardous waste, radioactive waste, renewable energy use, non-renewable energy, secondary materials, and Global Warming Potential (GWP) emissions; in contrast, secondary fuel waste was not significant. Clustering divided countries into four emission-level groups, placing Indonesia in the highest-emission category, and highlighted metal and semi-manufactured plastic products as the largest emission contributors. These insights support prioritizing emission-reduction efforts at both industry and national levels, help address client analysis requests, and strengthen PT XYZ’s competitive position. A 2025–2027 roadmap proposes refining the dashboard based on user feedback; migrating internal company data into the database; implement the database on PT XYZ’s servers; extending the dashboard to other sectors and corporate-level GHG emissions; and exploring machine learning for predictive analysis and optimal emission-reduction recommendations. Future research suggestions include detailing steel product categories, tailoring dashboards for different user groups, creating a user guide, analyzing waste types, and standardizing internal data nomenclatu

Item Type: Thesis (Masters)
Uncontrolled Keywords: Analisis Korelasi, Basis Data, Dashboard Analitik, K-Means Clustering, Life Cycle Assessment, Statistik Deskriptif, Correlation Analysis, Database, Analytical Dashboard, K-Means Clustering, Life Cycle Assessment, Descriptive Statistics
Subjects: Q Science > QA Mathematics > QA278.55 Cluster analysis
Q Science > QA Mathematics > QA76.9.D37 Data warehousing.
T Technology > T Technology (General) > T385 Visualization--Technique
T Technology > T Technology (General) > T57.5 Data Processing
T Technology > T Technology (General) > T58.6 Management information systems
T Technology > T Technology (General) > T58.62 Decision support systems
T Technology > TD Environmental technology. Sanitary engineering > TD194.6 Environmental impact analysis
Z Bibliography. Library Science. Information Resources > Z666.7 Metadata.
Z Bibliography. Library Science. Information Resources > ZA Information resources > ZA4450 Databases
Divisions: Interdisciplinary School of Management and Technology (SIMT) > 61101-Master of Technology Management (MMT)
Depositing User: Gloria F.j. Kartikasari
Date Deposited: 21 Jul 2025 05:42
Last Modified: 21 Jul 2025 05:42
URI: http://repository.its.ac.id/id/eprint/120254

Actions (login required)

View Item View Item