Desain Pabrik Green Diesel Dari Palm Fatty Acid Distillate (PFAD) Dengan Proses Hidrodeoksigenasi Menggunakan Katalis Ni/NZ0.5

Hayati, Fithria Mumtaza and Putri, Finda Setyacahyani (2025) Desain Pabrik Green Diesel Dari Palm Fatty Acid Distillate (PFAD) Dengan Proses Hidrodeoksigenasi Menggunakan Katalis Ni/NZ0.5. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5008211023_5008211035-Undergraduate_Thesis.pdf] Text
5008211023_5008211035-Undergraduate_Thesis.pdf
Restricted to Repository staff only

Download (5MB) | Request a copy

Abstract

Kebutuhan Bahan Bakar Minyak (BBM) di Indonesia terus meningkat setiap tahun, hal ini tidak sejalan dengan cadangan energi fosil di Indonesia yang semakin menipis. Untuk memenuhi kapasitas energi domestik berkelanjutan, diperlukan adanya penggantian bahan bakar yang lebih ramah lingkungan dan bersifat sustainable untuk memastikan ketahanan energi nasional di masa depan. Kementerian ESDM sudah mengembangkan dan mengimplementasi penggunaan bahan bakar ramah lingkungan dari campuran solar dan Fatty Acid Methyl Ester (FAME) atau biodiesel yang direncanakan akan mencapai B40. Namun, biodiesel rentan terhadap oksidasi dan kontaminasi, serta memiliki nilai energi yang lebih rendah dibanding diesel. Green diesel atau biodiesel generasi kedua (G2) dinilai lebih efektif karena memiliki stabilitas termal dan cetane number yang lebih tinggi, sehingga sifat fisik dan kimianya lebih mendekati diesel daripada biodiesel. Selain itu, emisi gas buang dari pembakaran green diesel lebih rendah daripada diesel, sehingga lebih baik untuk lingkungan. Pabrik green diesel ini akan memanfaatkan Palm Fatty Acid Distillate (PFAD) sebagai bahan baku, dengan kapasitas 140.000 ton/tahun yang akan didirikan di Kabupaten Simalungun, Sumatera Utara, tepatnya di Kawasan Ekonomi Khusus (KEK) Sei Mangkei. PFAD merupakan produk samping dari penyulingan minyak sawit mentah (CPO) dengan ketersediaan yang melimpah di Indonesia mencapai 2,38 juta ton. Proses pembuatan green diesel terdiri dari 3 tahapan, yaitu persiapan bahan baku, reaksi hidrodeoksigenasi, serta pemisahan dan pemurnian green diesel. Reaksi hidrodeoksigenasi ini terdiri dari seruntutan reaksi, yaitu hidrodeoksigenasi (HDO), dekarboksilasi (DCO2) dan dekarbonilasi (DCO) yang disebut hidrodeoksigenasi (HDO) karena membutuhkan gas hidrogen untuk reaksinya. Reaksi ini terjadi di dalam reaktor fixed bed multitube pada suhu 350°C dan tekanan 40 atm dengan bantuan katalis Ni/NZ0.5. Berdasarkan analisis perhitugan ekonomi yang telah dilakukan, didapatkan penaksiran modal (CAPEX) sebesar Rp 1.584.198.577.647 dan biaya operasional (OPEX) sebesar Rp 2.444.361.874.900. Estimasi umur pabrik adalah 10 tahun. Dari perhitungan didapatkan nilai IRR sebesar 24,65%, dengan POT selama 5,916 tahun, dan BEP sebesar 34,06%. NPV yang didapatkan bernilai positif, yaitu sebesar Rp 1.122.675.435.832 Dari hasil analisis dan perhitungan yang telah dilakukan, maka dapat disimpulkan bahwa pabrik green diesel ini menguntungkan dan layak untuk didirikan.
==================================================================================================================================
The demand for petroleum fuels (BBM) in Indonesia continues to increase every year, while the country’s fossil energy reserves are steadily depleting. To ensure sustainable domestic energy capacity, it is essential to develop alternative fuels that are more environmentally friendly and sustainable, in order to safeguard national energy security in the future. The Ministry of Energy and Mineral Resources (ESDM) has initiated the development and implementation of environmentally friendly fuels, particularly through the blending of diesel with Fatty Acid Methyl Ester (FAME) or biodiesel, with a target of achieving B40. However, biodiesel is susceptible to oxidation and contamination and possesses a lower energy content compared to conventional diesel. Green diesel, or second-generation (G2) biodiesel, is considered more effective due to its higher thermal stability and cetane number, resulting in physical and chemical properties more closely resembling petroleum diesel. Furthermore, green diesel combustion produces lower exhaust emissions than conventional diesel, making it more environmentally benign. This green diesel plant will utilize Palm Fatty Acid Distillate (PFAD) as its feedstock, with a production capacity of 140,000 tons per year. The facility will be established in Simalungun Regency, North Sumatra, specifically within the Sei Mangkei Special Economic Zone (SEZ). PFAD is a by-product of crude palm oil (CPO) refining and is abundantly available in Indonesia, with a supply reaching 2.38 million tons. The green diesel production process consists of three main stages, namely feedstock preparation, the hydrodeoxygenation reaction, and the subsequent separation and purification of green diesel. The hydrodeoxygenation reaction comprises a sequence of chemical transformations, which include hydrodeoxygenation (HDO), decarboxylation (DCO₂), and decarbonylation (DCO). This overall process is referred to as hydrodeoxygenation (HDO) because it utilizes hydrogen gas as a reactant. This reaction takes place in a fixed-bed multitube reactor at a temperature of 350°C and a pressure of 40 atm, using a Ni/NZ0.5 catalyst. Based on the economic analysis conducted, the estimated capital expenditure (CAPEX) amounts to IDR 1,584,198,577,647 while the operational expenditure (OPEX) is IDR 2,444,361,874,900. The estimated plant lifetime is 10 years. The project yields an Internal Rate of Return (IRR) of 24.65%, a Payback Time (POT) of 5.916 years, and a Break-Even Point (BEP) of 34.06%. The Net Present Value (NPV) is positive, amounting to IDR 1,122,675,435,832. Based on the analysis and calculations conducted, it can be concluded that the green diesel plant is economically feasible and viable for development.

Item Type: Thesis (Other)
Uncontrolled Keywords: Green Diesel, Hidrodeoksigenasi, Palm Fatty Acid Distillate, Green Diesel, Hydrodeoxygenation, Palm Fatty Acid Distillate
Subjects: T Technology > TP Chemical technology > TP155.5 Chemical plants--Design and construction
T Technology > TP Chemical technology > TP359.B46 Biodiesel fuels.
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Chemical Engineering > 24201-(S1) Undergraduate Thesis
Depositing User: Fithria Mumtaza Hayati
Date Deposited: 21 Jul 2025 06:26
Last Modified: 21 Jul 2025 06:26
URI: http://repository.its.ac.id/id/eprint/120279

Actions (login required)

View Item View Item