Perancangan Sistem Internet of Things (IoT) Untuk Peralatan Deteksi Arcing Pada Jaringan Tegangan Rendah

Anam, Khoirul (2025) Perancangan Sistem Internet of Things (IoT) Untuk Peralatan Deteksi Arcing Pada Jaringan Tegangan Rendah. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5022211051-Undergraduate_Thesis.pdf] Text
5022211051-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (9MB) | Request a copy

Abstract

Fenomena arcing pada sistem tegangan rendah menjadi salah satu penyebab utama kebakaran yang sering terjadi di berbagai tempat di dunia. Hasil pengamatan menunjukkan bahwa pada beban sebesar 1300 Watt, durasi arcing paralel yang terjadi hanya sekitar 0,00133 detik ketika menggunakan variasi 1 serabut, lalu 0,009 detik saat menggunakan 2 serabut. Terdapat pula karakteristik arcing seri dimana tingkat amplitudo arus gangguan arcing seri berkurang sebesar 80% dari amplitudo arus normal serta memiliki bentuk bahu (shoulder) di titik nol. Karakteristik arcing seri inilah dan durasi gangguan pada arcing paralel yang sangat singkat ini berada jauh di bawah waktu respon minimal perangkat pengaman seperti Miniature Circuit Breaker (MCB) dan Fuse sehingga tidak mampu mendeteksi gangguan tersebut. Penelitian ini bertujuan untuk merancang sebuah sistem Internet of Things (IoT) yang ditanamkan pada peralatan deteksi arcing yang mampu memberikan peringatan dini terjadinya arcing secara real-time guna mitigasi kebakaran pada jaringan tegangan rendah. Algoritma yang digunakan pada sistem pendeteksian ini dirancang untuk dapat membedakan tiga kondisi pada rangkaian, yaitu kondisi normal, switching, dan saat terjadi arcing. Sistem ini memanfaatkan mikrokontroler ESP32 yang terintegrasi dengan metode pengolahan sinyal yaitu Discrete Wavelet Transform (DWT) untuk mendeteksi arcing paralel dan Fast Fourier Transform (FFT) untuk mendeteksi arcing seri. Sistem yang dikembangkan mampu mengumpulkan data deteksi arcing ke ESP32 dan mengirimkannya ke Firebase menggunakan API Key sebagai metode komunikasi. Data yang diperoleh dari deteksi arcing dikirimkan secara otomatis melalui koneksi nirkabel ke server, sehingga pengguna dapat menerima notifikasi atau memantau status jaringan listrik secara langsung melalui platform berbasis website. Hasil pengujian menunjukkan sistem berfungsi baik, memberikan data deteksi yang akurat, dan responsif terhadap perubahan nilai arus.
================================================================================================================================
Arcing in low-voltage systems is one of the main causes of fires that frequently occur in various locations worldwide. Observations show that at a load of 1300 Watts, the duration of parallel arcing is only approximately 0.00133 s when using a single strand and 0.009 s when using two strands. There is also a characteristic of series arcing, where the amplitude of the series arcing fault current decreases by 80% from the normal current amplitude and has a shoulder shape at the zero point. These series arcing characteristics and the extremely short duration of the parallel arcing disturbance are far below the minimum response time of safety devices such as Miniature Circuit Breakers (MCBs) and Fuse s, making them unable to detect the disturbance. This study aims to design an Internet of Things (IoT) system embedded in arcing detection equipment capable of providing real-time early warnings of arcing to mitigate fires in low-voltage networks. The algorithm used in this detection system is designed to distinguish between three conditions in the circuit: normal, switching, and arcing. This system utilizes an ESP32 microcontroller integrated with signal processing methods, namely Discrete Wavelet Transform (DWT) to detect parallel arcing and Fast Fourier Transform (FFT) to detect series arcing. The developed system is capable of collecting arcing detection data to the ESP32 and sending them to Firebase using an API Key as a communication method. The data obtained from arcing detection were automatically transmitted via a wireless connection to the server, enabling users to receive notifications or monitor the status of the electrical network directly through a web-based platform.The test results indicate that the system functions well, providing accurate detection data and responding promptly to changes in the current values.

Item Type: Thesis (Other)
Uncontrolled Keywords: Deteksi Arcing, Internet of Things, Fast Fourier Transform, Discreate Wavelet Transform, Tegangan Rendah, Arcing Detection, Internet of Things, Fast Fourier Transform, Discrete Wavelet Transform, Low Voltage
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK3226 Transients (Electricity). Electric power systems. Harmonics (Electric waves).
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK5105.888 Web sites--Design. Web site development.
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7871.674 Detectors. Sensors
Divisions: Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20201-(S1) Undergraduate Thesis
Depositing User: Khoirul Anam
Date Deposited: 25 Jul 2025 02:01
Last Modified: 25 Jul 2025 02:01
URI: http://repository.its.ac.id/id/eprint/120726

Actions (login required)

View Item View Item