Simulasi Regenerative Braking dengan Fuzzy Logic Controller pada Kereta Rel Diesel Elektrik (KRDE)

Wahyuni, Anugrah Sri (2025) Simulasi Regenerative Braking dengan Fuzzy Logic Controller pada Kereta Rel Diesel Elektrik (KRDE). Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5022211012-Undergraduate_Thesis.pdf] Text
5022211012-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (9MB) | Request a copy

Abstract

Penelitian ini menganalisis efektivitas sistem regenerative braking dengan Fuzzy Logic Controller pada kendaraan hybrid untuk mengoptimalkan pemulihan energi dan efisiensi bahan bakar. Simulasi dilakukan dengan membandingkan performa Fuzzy Logic Controller dan Rule Based Control pada berbagai konfigurasi stasiun dan pola pengereman. Hasil simulasi menunjukkan bahwa Fuzzy Logic Controller berhasil meregenerasi energi sebesar 119,89 kWh dengan persentase daya teregenerasi 45,46% dari total energi tersedia. Sistem hybrid dengan regenerative braking menunjukkan superioritas dengan diversifikasi sumber energi 63% engine diesel (314,18 kWh) dan 37% baterai (184,19 kWh), menghasilkan penghematan energi total 18,48% dibandingkan sistem non-hybrid yang bergantung sepenuhnya pada engine diesel (410,35 kWh). Penghematan konsumsi bahan bakar mencapai 23,64 liter (22,77%) dengan total konsumsi 80,31 liter, setara dengan penghematan biaya operasional Rp 449.109. Konfigurasi optimal diperoleh pada 4 stasiun dengan 8 kali pengereman yang menghasilkan persentase daya teregenerasi 69,13% dengan konsumsi energi total 353,40 kWh. Fuzzy Logic Controller menunjukkan performa superior dibandingkan Rule Based Control dengan peningkatan energi regenerasi 3,72 kWh (3,20%), pengurangan kompensasi pneumatik dari 55,32% menjadi 54,54%, dan penghematan tambahan Rp 103.817. Kontribusi utama penelitian ini adalah optimalisasi transisi daya yang lebih halus dan koordinasi yang lebih baik antara engine diesel dan sistem regenerative braking melalui implementasi Fuzzy Logic Controller untuk mengurangi osilasi daya.
============================================================================================================================================
This research analyzes the effectiveness of regenerative braking systems with Fuzzy Logic Controller on hybrid vehicles to optimize energy recovery and fuel efficiency. Simulations were conducted to compare the performance of Fuzzy Logic Controller and Rule Based Control across various station configurations and braking patterns. Simulation results demonstrate that the Fuzzy Logic Controller successfully regenerated 119.89 kWh of energy with a regenerated power percentage of 45.46% from total available energy. The hybrid system with regenerative braking shows superiority through energy source diversification of 63% diesel engine (314.18 kWh) and 37% battery (184.19 kWh), achieving total energy savings of 18.48% compared to non-hybrid systems that rely entirely on diesel engine (410.35 kWh). Fuel consumption savings reached 23.64 liters (22.77%) with total consumption of 80.31 liters, equivalent to operational cost savings of IDR 449,109. Optimal configuration was achieved with 4 stations and 8 braking events, resulting in 69.13% regenerated power percentage with total energy consumption of 353.40 kWh. The Fuzzy Logic Controller demonstrates superior performance compared to Rule Based Control with regeneration energy improvement of 3.72 kWh (3.20%), pneumatic compensation reduction from 55.32% to 54.54%, and additional savings of IDR 103,817. The main contribution of this research is optimizing smoother power transitions and better coordination between diesel engine and regenerative braking system through Fuzzy Logic Controller implementation to reduce power oscillations.

Item Type: Thesis (Other)
Uncontrolled Keywords: Fuzzy Logic Controller, Regenerative Braking, Sistem Hybrid, Penghematan Bahan Bakar Fuzzy Logic Controller, regenerative braking, hybrid system, fuel consumption savings
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1007 Electric power systems control
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2785 Electric motors, Induction.
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2941 Storage batteries
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2943 Battery chargers.
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK3030 Electric power distribution systems
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK4055 Electric motor
Divisions: Faculty of Electrical Technology > Electrical Engineering > 20201-(S1) Undergraduate Thesis
Depositing User: Anugrah Sri Wahyuni
Date Deposited: 25 Jul 2025 07:42
Last Modified: 25 Jul 2025 07:42
URI: http://repository.its.ac.id/id/eprint/121614

Actions (login required)

View Item View Item