Putri, Revi Muliana Cindy Prastica (2025) Penerapan Metode Extended Kalman Filter Dalam Estimasi Parameter Dan Populasi Pada Model Penyebaran Penyakit Campak. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5002211077-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (4MB) | Request a copy |
Abstract
Penyakit campak merupakan salah satu penyakit menular yang masih menjadi masalah kesehatan di seluruh dunia, termasuk Indonesia. Pada penelitian ini dikembangkan model stokastik penyebaran penyakit campak dengan enam kompartemen yaitu Susceptible, Exposed, Infected, Recovered, first dose Vaccinated, dan second dose Vaccinated. Model stokastik tersebut merupakan hasil pengembangan dari model deterministik dengan menambahkan gangguan acak pada setiap kompartemen. Analisis terhadap kedua model, meliputi analisis titik kesetimbangan, kestabilan, dan sensitivitas parameter. Hasil analisis titik kesetimbangan menunjukkan adanya titik kesetimbangan bebas penyakit dan titik kesetimbangan endemik penyakit. Analisis kestabilan menunjukkan bahwa model deterministik maupun stokastik stabil asimtotik di titik kesetimbangan bebas penyakit. Adapun hasil analisis sensitivitas parameter menunjukkan bahwa setiap parameter memiliki pengaruh dalam meningkatkan atau menekan penyebaran penyakit campak. Selanjutnya, dilakukan estimasi populasi dan parameter pada kedua model menggunakan metode Extended Kalman Filter. Hasil dari simulasi menunjukkan bahwa hasil estimasi pada model stokastik lebih akurat dibandingkan dengan model deterministik, yang ditunjukkan melalui MAPE kedua hasil estimasi tersebut terhadap data aktual populasi terinfeksi campak. Hal ini menunjukkan bahwa model stokastik lebih realistis dalam merepresentasikan dinamika penyebaran penyakit campak, karena mempertimbangkan ketidakpastian yang tidak dapat ditangkap oleh model deterministik.
=========================================================================================================================================
Measles is an infectious disease that remains a public health issue throughout the world, including Indonesia. This study developed a stochastic model of measles transmission consisting of six compartements, namely Susceptible, Exposed, Infected, Recovered, first dose Vaccinated, and second dose Vaccinated. The stochastic model is a development of the deterministic model by introducing random disturbances into each compartment. The analysis of both models includes equilibrium point analysis, stability, and parameter sensitivity. The equilibrium point analysis results show the existence of a disease free equilibrium point and an endemic equilibrium point. The stability analysis shows that both the deterministic and stochastic models are asymptotically stable at the disease-free equilibrium point. Meanwhile, the parameter sensitivity analysis indicates that each parameter has an influence on either increasing or reducing the spread of measles. Futhermore, population and parameter estimation were carried out on both models using the Extended Kalman Filter method. The results of the simulation show that the estimation results in the stochastic model are more accurate than the deterministic model, which is shown by the Mean Absolute Percentage Error of both estimations compared to actual data of the measles infected population. This demonstrates that the stochastic model provides a more realistic representation of measles transmission dynamics, as it accounts for uncertainties that cannot be captured by the deterministic model.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Campak, Extended Kalman Filter, Estimasi, Model Deterministik, Model Stokastik, Measles, Extended Kalman Filter, Estimation, Deterministic Model, Stochastic Model |
Subjects: | Q Science > QA Mathematics > QA401 Mathematical models. Q Science > QA Mathematics > QA402.3 Kalman filtering. |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44201-(S1) Undergraduate Thesis |
Depositing User: | Revi Muliana Cindy Prastica Putri |
Date Deposited: | 25 Jul 2025 07:16 |
Last Modified: | 25 Jul 2025 07:16 |
URI: | http://repository.its.ac.id/id/eprint/121742 |
Actions (login required)
![]() |
View Item |