Yaristyan, Athallah Khairi (2025) Pengembangan Chatbot Advisor Investasi Menggunakan Large Language Model Untuk Prediksi Dan Rekomendasi Pada Pasar Saham. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5024211043-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (17MB) | Request a copy |
Abstract
Investasi saham menjadi salah satu alternatif populer dalam mengelola keuangan jangka panjang, terutama di kalangan generasi muda yang semakin sadar akan pentingnya perencanaan finansial. Tingginya minat investasi tidak selalu diiringi dengan kemampuan dasar yang memadai dalam membaca kondisi pasar, memahami data keuangan, dan pengambilan keputusan. Maka dari itu, dibutuhkan sebuah sistem yang dapat membantu para investor muda dalam membantu kegiatan berinvestasi mereka. Dengan mengembangkan Chatbot dengan basis Large Language Model (LLM), diharapkan dapat memahami pertanyaan pengguna dalam bahasa alami, memberikan informasi terkait kondisi saham tertentu, menganalisis pergerakan harga berdasarkan data historis, serta memberikan rekomendasi beli atau jual saham secara otomatis.
=================================================================================================================================
Stock investment has become one of the most popular alternatives for long-term financial management, especially among younger generations who are increasingly aware of the importance of financial planning. However, high interest in investing is not always accompanied by adequate basic skills in reading market conditions, understanding financial data, and making decisions. Therefore, a system is needed to assist young investors in managing their investment activities. By developing a chatbot based on a Large Language Model (LLM), the system is expected to understand user questions in natural language, provide information related to specific stocks, analyze price movements based on historical data, and automatically generate buy or sell recommendations.
Actions (login required)
![]() |
View Item |