Tarisma, Tantri (2025) Dimensi Metrik Periferal Dan Dimensi Metrik Monofonik Periferal Pada Graf. Masters thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
6002231002_Master_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (2MB) | Request a copy |
Abstract
Diberikan G adalah graf terhubung dengan himpunan simpul V(G) = {v_1, v_2, ..., v_k} dan himpunan sisi E(G) = {e_1, e_2, ..., e_k}. Himpunan terurut W = {w_1, w_2, ..., w_k} merupakan himpunan bagian dari V(G). Jarak d(u,v) adalah panjang lintasan terpendek antara simpul u dan v, sedangkan jarak monofonik d_m(u,v) adalah panjang lintasan terpanjang antara simpul u dan v yang tidak memuat tali busur. Representasi r(v | W) dari simpul v terhadap himpunan terurut W dinyatakan sebagai k-tuple (d(v, w_1), d(v, w_2), ..., d(v, w_k)), di mana W disebut himpunan pembeda periferal dari G jika untuk setiap pasangan simpul berbeda u, v ∈ V(G), berlaku r(u | W) ≠ r(v | W). Himpunan terurut W dengan kardinalitas minimal disebut basis untuk G dan kardinalitas |W| disebut dimensi metrik periferal dari G, dituliskan dim(G). Representasi monofonik r_m(v | W_m) dari simpul v terhadap himpunan terurut W_m didefinisikan sebagai k-tuple (d_m(v, w_1), d_m(v, w_2), ..., d_m(v, w_k)), di mana W_m disebut himpunan pembeda monofonik periferal dari G jika untuk setiap pasangan simpul berbeda u, v ∈ V(G), berlaku r_m(u | W_m) ≠ r_m(v | W_m). Himpunan terurut W_m dengan jumlah elemen minimal disebut basis monofonik untuk G dan kardinalitas |W_m| disebut dimensi metrik monofonik periferal dari G, dituliskan mdim(G). Penelitian ini menentukan nilai dim(G) dan mdim(G) untuk graf-graf dasar G yaitu P_n, C_n, K_n, S_n, graf abjad, serta graf hasil operasi korona lingkungan tertutup antara graf G dan K_1. Analisis menunjukkan bahwa untuk setiap graf terhubung G berlaku d(v,u) ≤ d_m(v,u) dan dim(G) ≤ mdim(G), serta jika G merupakan graf pohon, maka d(v,u) = d_m(v,u) untuk setiap pasangan simpul v,u ∈ V(G), sehingga diperoleh dim(G) = mdim(G).
======================================================================================================================================
Given a connected graph G with vertex set V(G) = {v_1, v_2, ..., v_k} and edge set E(G) = {e_1, e_2, ..., e_k}, let W = {w_1, w_2, ..., w_k} be an ordered subset of V(G). The distance d(u,v) is defined as the length of the shortest path between vertices u and v, while the monophonic distance d_m(u,v) is the length of the longest path between u and v that does not contain any chord. The representation r(v | W) of a vertex v with respect to W is expressed as the k-tuple (d(v, w_1), d(v, w_2), ..., d(v, w_k)), where W is called a \textit{peripheral resolving set} of G if, for every pair of distinct vertices u, v ∈ V(G), r(u | W) ≠ r(v | W). An ordered set W with minimal cardinality is called a \textit{basis} for G, and its cardinality |W| is the \textit{peripheral metric dimension} of G, denoted dim(G). Similarly, the monophonic representation r_m(v | W_m) with respect to an ordered set W_m is given by the k-tuple (d_m(v, w_1), d_m(v, w_2), ..., d_m(v, w_k)), where W_m is a \textit{monophonic peripheral resolving set} of G if r_m(u | W_m) ≠ r_m(v | W_m) for all distinct u, v ∈ V(G). An ordered set W_m with minimal cardinality is referred to as a \textit{monophonic basis} for G, and its cardinality |W_m| is the \textit{monophonic peripheral metric dimension}, mdim(G). This study determines the values of dim(G) and mdim(G) for basic graphs where G is P_n, C_n, K_n, S_n, alphabet graphs, and graphs obtained from the closed neighborhood corona operation between G and K_1. The analysis shows that, for any connected graph G, it holds that d(v,u) ≤ d_m(v,u) and dim(G) ≤ mdim(G).
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | Dimensi Metrik, Jarak Monofonik, Simpul Perifera Metric Dimension, Monophonic Distance, Peripheral Vertex |
Subjects: | Q Science Q Science > QA Mathematics Q Science > QA Mathematics > QA166 Graph theory |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44101-(S2) Master Thesis |
Depositing User: | Tantri Tarisma |
Date Deposited: | 30 Jul 2025 06:20 |
Last Modified: | 30 Jul 2025 06:20 |
URI: | http://repository.its.ac.id/id/eprint/123215 |
Actions (login required)
![]() |
View Item |