Seluta, Michael Renard Savalyno (2025) Studi Terhadap Morfologi Dan Sifat Tarik Pada Komposit tBA/BaTiO3 Variasi Persentase BaTiO3 Dengan Fabrikasi Metode Digital Light Processing Untuk Aplikasi Printable Wearable Device. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5011211088-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (7MB) | Request a copy |
Abstract
Printable wearable device merupakan perangkat elektronik fleksibel yang dapat diproduksi langsung menggunakan teknologi cetak tiga dimensi. Perangkat ini harus fleksibel, ringan, biokompatibel, dan tahan deformasi, serta dibuat dari material yang sesuai dengan pencetakan aditif dan tetap berfungsi baik di berbagai kondisi lingkungan. Penelitian ini bertujuan untuk mengkaji pengaruh variasi konsentrasi Barium Titanate (BaTiO₃) terhadap morfologi dan sifat mekanik komposit berbasis tert-Butyl Acrylate (tBA) yang difabrikasi menggunakan metode Digital Light Processing (DLP) untuk aplikasi printable wearable device. Formulasi resin terdiri dari tBA sebagai matriks polimer, TPO sebagai fotoinisiator, dan BYK-111 sebagai dispersan untuk meningkatkan kestabilan filler anorganik. Variasi konsentrasi BTO yang digunakan adalah 0, 20, 40, dan 60 wt%. Penelitian ini mencakup pengujian sedimentasi, curing-depth, SEM, XRD, FTIR, dan Uji Tarik ASTM D882. untuk menilai kestabilan dispersi, perubahan struktur kimia, kristalinitas, morfologi mikro, serta kekuatan mekanik dari setiap variasi. Hasil pengujian menunjukkan peningkatan persentase sedimentasi seiring bertambahnya konsentrasi BTO dari 10% (20 wt% BTO) menjadi 30% (60 wt% BTO). Curingdepth mengalami penurunan dari 290 µm (0 wt% 200s) menjadi 180 µm (60 wt% 200s), akibat adanya efek scattering dari filler BTO. Hasil SEM memperlihatkan aglomerasi partikel seiring peningkatan konsentrasi BTO mulai dari 20 wt% dan semakin parah pada 60 wt%, menyebabkan penurunan homogenitas dan potensi inisiasi retak. Hasil analisis XRD menunjukkan keberadaan BTO dengan fase tetragonal dan intensitas 100% pada 2θ ≈ 31°, serta intensitas semakin meningkat seiring penambahan filler. Hasil analisis FTIR mengidentifikasi gugus pada komposit seperti C-O, C-H, C-O-C, C=C, C=O, -OH, dan M-O. Hasil pengujian tarik menunjukkan penurunan nilai pada semua parameternya. Modulus Young turun dari 360 Mpa (0 wt% BTO) menjadi 131 Mpa (60 wt% BTO). Ultimate Tensile Strength turun dari 9 Mpa (0 wt%) menjadi 3.46 (60 wt%). Elongation at Break menurun dari 65.5% (0 wt%) menjadi 11.3% (60 wt%)
=======================================================================================================================================
Printable wearable devices are flexible electronic devices that can be produced directly using three-dimensional printing technology. These devices must be flexible, lightweight, biocompatible, and resistant to deformation, and made from materials that are suitable for additive printing and remain functional in various environmental conditions. This study aims to investigate the effect of varying concentrations of Barium Titanate (BaTiO₃) on the morphology and mechanical properties of tert-Butyl Acrylate (tBA)-based composites fabricated using the Digital Light Processing (DLP) method for printable wearable device applications. The resin formulation consists of tBA as the polymer matrix, TPO as the photoinitiator, and BYK-111 as the dispersant to enhance the stability of the inorganic filler. The variations in BaTiO₃ concentration used are 0, 20, 40, and 60 wt%. This study includes sedimentation testing, curing depth, SEM, XRD, FTIR, and ASTM D882 tensile testing to assess dispersion stability, changes in chemical structure, crystallinity, micro-morphology, and mechanical strength of each variation. Test results showed an increase in sedimentation percentage as BTO concentration increased from 10% (20 wt% BTO) to 30% (60 wt% BTO). Curing depth decreased from 290 µm (0 wt% 200s) to 180 µm (60 wt% 200s) due to the scattering effect of the BTO filler. SEM results showed particle agglomeration with increasing BTO concentration starting from 20 wt% and becoming more severe at 60 wt%, leading to reduced homogeneity and potential crack initiation. XRD analysis results indicated the presence of BTO in the tetragonal phase with 100% intensity at 2θ ≈ 31°, and intensity increasing with added filler. FTIR analysis identified groups in the composite such as C-O, C-H, C-O-C, C=C, C=O, -OH, and M-O groups in the composite. Tensile testing results showed a decrease in all parameters. Young's modulus decreased from 360 MPa (0 wt% BTO) to 131 MPa (60 wt% BTO). Ultimate Tensile Strength decreased from 9 MPa (0 wt%) to 3.46 (60 wt%). Elongation at Break decreased from 65.5% (0 wt%) to 11.3% (60 wt%).
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | BTO, Digital Light Processing, Composite, Polymer, Printable Wearable Device, BTO, Digital Light Processing, Composite, Polymer, Printable Wearable Device |
Subjects: | T Technology > TP Chemical technology > TP1140 Polymers T Technology > TS Manufactures > TS161 Materials management. |
Divisions: | Faculty of Industrial Technology > Material & Metallurgical Engineering > 28201-(S1) Undergraduate Thesis |
Depositing User: | Michael Renard Savalyno Seluta |
Date Deposited: | 30 Jul 2025 10:11 |
Last Modified: | 30 Jul 2025 10:11 |
URI: | http://repository.its.ac.id/id/eprint/123819 |
Actions (login required)
![]() |
View Item |