Studi Numerik Pengaruh Kecepatan Kendaraan dengan Variasi SoC Aktivasi Hybrid dan Kecepatan Putaran ICE terhadap SoH Baterai PHEV ITS Pada Profil HCU Normal

Aniskurlillah, Deaz Luqmanal Hikmata (2025) Studi Numerik Pengaruh Kecepatan Kendaraan dengan Variasi SoC Aktivasi Hybrid dan Kecepatan Putaran ICE terhadap SoH Baterai PHEV ITS Pada Profil HCU Normal. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5007211008-Undergraduate_Thesis.pdf] Text
5007211008-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (6MB) | Request a copy

Abstract

Pemanasan global akibat emisi gas rumah kaca, di mana sektor transportasi menyumbang 20.7% dari total emisi karbon, mendorong pengembangan kendaraan ramah lingkungan seperti Plug-in Hybrid Electric Vehicle (PHEV). Dalam sistem PHEV, baterai memiliki peran krusial dalam efisiensi energi, keandalan, dan biaya operasional. Baterai dianggap mencapai End of Life (EoL) saat State of Health (SoH) turun hingga 80% dari kapasitas awal. Penuaan baterai ini utamanya disebabkan adanya degradasi lithium aktif akibat pembentukan Solid Electrolyte Interphase (SEI) pada permukaan elektrode. Penelitian ini bertujuan mengevaluasi pengaruh variasi kecepatan kendaraan, State of Charge (SoC) aktivasi hybrid, dan putaran Internal Combustion Engine (ICE) terhadap SoH dan performa baterai pada kendaraan PHEV ITS dengan profil Hybrid Control Unit (HCU) normal. Pengujian dilakukan menggunakan simulasi numerik MATLAB Simulink untuk memprediksi degradasi kapasitas berdasarkan parameter operasional seperti arus, SoC, dan temperatur sel. Hasil simulasi menunjukkan bahwa kecepatan kendaraan merupakan faktor paling signifikan terhadap degradasi baterai. Pada kecepatan 10 km/jam, baterai mencatat rata-rata masa pakai hingga 4.510 tahun, sedangkan pada kecepatan 30 km/jam, rata-rata masa pakai menurun hingga 1.423 tahun. Putaran ICE yang lebih tinggi (7500–8000 RPM) terbukti mengurangi beban baterai melalui kontribusi alternator, sehingga menurunkan stres termal berlebih akibat beban arus. SoC aktivasi tinggi mempercepat peralihan ke mode hybrid, menurunkan kedalaman pengosongan (Depth of Discharge/DoD) yang menyebabkan beban elektrokimia lebih ringan, sehingga memperlambat laju pembentukan SEI. Estimasi masa pakai ini didasarkan pada kondisi pengujian tanpa jeda antar-siklus, sehingga dapat merepresentasikan prediksi dinamis yang adaptif terhadap pola siklus berkendara. Analisis komparatif menunjukkan bahwa program HCU memberikan performa unggul berdasarkan masa pakai baterai, jarak tempuh, efisiensi kendaraan, dan biaya operasional. Program P1 (10-50-7500) pada kecepatan 10 km/jam menjadi variasi terbaik dengan masa pakai 5.004 tahun, jarak tempuh 192230 km, efisiensi 65.52%, dan biaya operasional Rp 1034.64/km. Pada kecepatan 20 km/jam, program P14 (20-70-8000) sebagai program terbaik dengan masa pakai 2.774 tahun, jarak tempuh 154477 km, efisiensi 39.85%, dan biaya operasional Rp 1025.72/km. Sementara pada kecepatan 30 km/jam, P15 (30-90-8000) paling unggul dengan masa pakai 1.516 tahun, jarak tempuh 82364 km, efisiensi 30.86%, dan biaya operasional Rp 903.33/km. Kombinasi kecepatan rendah–menengah, SoC tinggi, dan ICE 7500–8000 RPM terbukti optimal dalam menyeimbangkan efisiensi kendaraan dan ketahanan baterai. Hasil ini diharapkan menjadi acuan dalam pengembangan strategi manajemen energi pada PHEV tipe seri untuk mencapai efisiensi dan keberlanjutan sistem yang lebih baik.
===================================================================================================================================
Global warming due to greenhouse gas emissions, including the transportation sector contributing 20.7% of total carbon emissions, drives the development of environmentally friendly technologies such as Plug-in Hybrid Electric Vehicles (PHEVs). In PHEV systems, the battery, as the main component of PHEVs, plays a crucial role in terms of cost, energy efficiency, and reliability. In electric vehicles or HEVs, batteries are considered to have reached their End of Life (EoL) when the State of Health (SoH) drops to 80% of its original capacity. This battery aging is primarily caused by the degradation of active lithium due to the formation of the Solid Electrolyte Interphase (SEI) layer on the electrode surface. This study evaluates the effects of vehicle speed, hybrid activation State of Charge (SoC), and Internal Combustion Engine (ICE) speed on the SoH of the PHEV ITS battery under a normal Hybrid Control Unit (HCU) profile. Numerical simulations using MATLAB Simulink were conducted to predict capacity degradation based on operational parameters such as current, SoC, and cell temperature. The simulation results indicate that vehicle speed has the most significant impact on battery degradation. At 10 km/h, the battery demonstrates an average lifespan of up to 4.510 years, while at 30 km/h, the average lifespan decreases to 1.423 years. Higher ICE speeds (7500–8000 RPM) reduce battery load through alternator contribution, thereby lowering thermal stress caused by current demand. High SoC activation levels accelerate the transition to hybrid mode, decreasing the depth of discharge (DoD), which in turn reduces electrochemical stress and slows SEI layer formation. These lifespan estimations are based on continuous testing cycles without idle intervals, representing a dynamic prediction responsive to real driving patterns. Comparative analysis shows that HCU programs offer superior performance in battery life, driving range, efficiency, and operational cost. At 10 km/h, program P1 (10-50-7500) is the most optimal, with 5.004 years of battery life, 192230 km range, 65.52% efficiency, and Rp 1034.64/km cost. At 20 km/h, program P14 (20-70-8000) performs best with 2.774 years of battery life, 154477 km range, 39.85% efficiency, and Rp 1025.72/km cost. At 30 km/h, program P15 (30-90-8000) is the most effective, with 1.516 years of battery life, 82364 km range, 30.86% efficiency, and Rp 903.33/km cost. A combination of low-to-medium speed, high SoC, and ICE at 7500–8000 RPM proves optimal in balancing efficiency and battery durability. These results are expected to support the development of energy management strategies for series-type PHEVs to improve system efficiency and sustainability.

Item Type: Thesis (Other)
Uncontrolled Keywords: Penuaan Baterai, PHEV, SoH, Battery Aging
Subjects: T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL220 Electric vehicles and their batteries, etc.
T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL221.5 Hybrid Vehicles. Hybrid cars
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Deaz Luqmanal Hikmata Aniskurlillah
Date Deposited: 01 Aug 2025 02:34
Last Modified: 01 Aug 2025 02:34
URI: http://repository.its.ac.id/id/eprint/123959

Actions (login required)

View Item View Item