Panggabean, Jeremia (2025) Pemetaan Kerentanan Kecelakaan Lalu Lintas Menggunakan Fuzzy Geographically Weighted Clustering Sebagai Dasar Penenentuan Premi Asuransi Berbasis Risiko. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5006211017-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (3MB) | Request a copy |
Abstract
Kecelakaan lalu lintas merupakan peristiwa di jalan raya yang melibatkan minimal satu kendaraan dan dapat mengakibatkan kerusakan atau cedera. Di Provinsi Jawa Timur, kecelakaan lalu lintas menjadi masalah serius, terbukti dengan angka kecelakaan tertinggi di Indonesia selama tiga tahun berturut-turut menurut data Badan Pusat Statistik (BPS). Peningkatan angka kecelakaan ini sejalan dengan pertumbuhan jumlah kendaraan bermotor yang meningkat antara 1,7% hingga 3,6% setiap tahun dan mencapai 24.023.666 unit pada tahun 2023. Untuk mengurangi risiko pasca kecelakaan, pemerintah menyediakan asuransi kecelakaan melalui pembayaran Santunan Wajib Dana Kecelakaan Lalu Lintas Jalan (SWDKLLJ) saat perpanjangan Surat Tanda Nomor Kendaraan (STNK), sesuai Peraturan Menteri Keuangan Nomor 16/PMK.010/2017. Namun, besaran premi SWDKLLJ saat ini bersifat seragam dan hanya berdasarkan kapasitas mesin, tanpa mempertimbangkan perbedaan risiko antar wilayah. Penelitian ini bertujuan memetakan tingkat kerentanan kecelakaan lalu lintas di Provinsi Jawa Timur menggunakan metode Fuzzy Geographically Weighted Clustering (FGWC). Hasil analisis menunjukkan Provinsi Jawa Timur terbagi atas dua klaster: klaster 1 terdiri atas 17 kabupaten/kota dan klaster 2 terdiri atas 21 kabupaten/kota. Frekuensi klaim pada kedua klaster berdistribusi binomial negatif, sedangkan severitas berdistribusi lognormal. Perhitungan risk premium dilakukan dengan tiga metode menggunakan loading factor sebesar 10%. Penelitian ini memberikan manfaat yang signifikan dalam penetapan premi asuransi berbasis risiko yang lebih adil dan proporsional bagi masing-masing kabupaten/kota di Provinsi Jawa Timur. Selain itu, hasil penelitian ini juga dapat digunakan oleh pemerintah sebagai dasar untuk melakukan sosialisasi dan pembangunan infrastruktur di wilayah-wilayah yang memiliki kerentanan kecelakaan tinggi.
=====================================================================================================================================
Traffic accidents are incidents on the road involving at least one vehicle and can result in damage or injury. In East Java Province, traffic accidents are a serious problem, as evidenced by the highest accident rate in Indonesia for three consecutive years according to data from the Central Statistics Agency (BPS). This increase in accident rates aligns with the growth in the number of motor vehicles, which has risen between 1.7% and 3.6% annually and reached 24,023,666 units in 2023. To reduce post-accident risks, the government provides accident insurance through the payment of the Mandatory Traffic Accident Compensation Fund (SWDKLLJ) during vehicle registration renewal, in accordance with Ministry of Finance Regulation No. 16/PMK.010/2017. However, the current SWDKLLJ premium amount is uniform and based solely on engine capacity, without considering regional risk differences. This study aims to map the level of traffic accident vulnerability in East Java Province using the Fuzzy Geographically Weighted Clustering (FGWC) method. The analysis results show that East Java Province is divided into two clusters: Cluster 1 consists of 17 districts/cities and Cluster 2 consists of 21 districts/cities. The claim frequency in both clusters follows a negative binomial distribution, while the severity follows a lognormal distribution. Risk premium calculations were performed using three methods with a loading factor (m) of 10%. This study provides significant benefits in establishing risk-based insurance premiums that are fairer and more proportional for each district/city in East Java Province. Additionally, the results of this study can be used by the government as a basis for conducting outreach and infrastructure development in areas with high accident vulnerability.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Fuzzy Geographically Weighted Clustering (FGWC), Kecelakaan Lalu Lintas, Kerugian Agregat, Premi Risiko, Risiko Kecelakaan, Aggregate Loss, Fuzzy Geographically Weighted Clustering (FGWC), Risk Premium, Traffic Accidents, Traffic Accident Risk. |
Subjects: | Q Science > QA Mathematics > QA39.3 Fuzzy mathematics Q Science > QA Mathematics > QA278 Cluster Analysis. Multivariate analysis. Correspondence analysis (Statistics) |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Actuaria > 94203-(S1) Undergraduate Thesis |
Depositing User: | Jeremia Panggabean |
Date Deposited: | 31 Jul 2025 03:14 |
Last Modified: | 31 Jul 2025 03:14 |
URI: | http://repository.its.ac.id/id/eprint/123990 |
Actions (login required)
![]() |
View Item |