Prabowo, Hanin Ainussyamsi (2025) Pengaruh Alkohol Isopropil Terhadap Stabilitas Generasi Hidrogen Dari Reaksi Limbah Kaleng Aluminium Dengan Larutan NaOH Untuk Aplikasi Fuel Cell. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5009211036-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (3MB) | Request a copy |
Abstract
Krisis energi global dan keterbatasan bahan bakar fosil mendorong pengembangan teknologi energi alternatif yang bersih dan berkelanjutan, salah satunya adalah fuel cell berbahan bakar hidrogen. Namun, sistem fuel cell berbasis reaksi aluminium–air dengan larutan NaOH menghadapi tantangan berupa ketidakstabilan laju aliran hidrogen yang kerap melebihi kapasitas konsumsi dan suhu operasi fuel cell sehingga menurunkan efisiensi energi dan umur pakai. Penelitian ini bertujuan mengoptimalkan produksi hidrogen melalui penambahan isopropil alkohol (IPA) sebagai agen pengendali stabilitas reaksi. Metode yang digunakan mencakup preparasi sampel kaleng aluminium dan karakterisasinya menggunakan XRF dan ICP, pengujian evolusi hidrogen melalui pengukuran volume, suhu, pH, serta arus dan tegangan fuel cell. Sisa reaksi dikarakterisasi menggunakan XRD, SEM, dan FTIR sedangkan aspek performa dianalisis melalui perhitungan flowrate, daya, energi, dan kinetika reaksi. Variasi yang diuji meliputi molaritas NaOH 1 M, 1,5 M, dan 2 M dengan rasio volumetrik NaOH:IPA 1:0, 4:1, 3:1, dan 2:1. Hasil penelitian menunjukkan bahwa penambahan IPA secara signifikan memperpanjang durasi reaksi hingga 51,39% dan menurunkan laju reaksi hingga 34,39%. Kondisi optimal diperoleh pada 1 M NaOH dengan rasio 2:1 yang menghasilkan puncak flowrate sebesar 23,98 mL/min dan energi listrik 89.539,28 mWh, sesuai spesifikasi konsumsi hidrogen Proton Exchange Membrane Fuel Cell (PEMFC) sebesar 14–21 mL/min, serta menjaga suhu reaksi di bawah 40 °C. Validitas peran IPA sebagai pengendali kestabilan diperkuat melalui data Electrochemical Impedance Spectroscopy (EIS) yang menunjukkan teredamnya efek induktif dan berkurangnya respons Nyquist sebagai indikasi penghambatan reaksi korosi aktif. Selain itu, kurva Tafel menunjukkan penurunan laju korosi aluminium pada sistem dengan penambahan IPA dibandingkan tanpa IPA. Dengan demikian, IPA terbukti efektif sebagai aditif pengendali dalam sistem produksi hidrogen berbasis limbah aluminium untuk mendukung efisiensi dan keberlanjutan fuel cell.
=================================================================================================================================
The global energy crisis and the limitations of fossil fuels have driven the development of clean and sustainable alternative energy technologies, one of which is hydrogen-powered fuel cells. However, aluminum–air fuel cell systems using NaOH solution face challenges in the form of unstable hydrogen flow rates that often exceed the fuel cell’s consumption capacity and operational temperature, thereby reducing energy efficiency and lifespan. This study aims to optimize hydrogen production by adding isopropyl alcohol (IPA) as a reaction stabilitycontrolling agent. The methodology includes preparation and characterization of aluminum can samples using XRF and ICP, monitoring hydrogen evolution through measurements of volume, temperature, pH, as well as fuel cell current and voltage. The reaction residues were characterized using XRD, SEM, and FTIR, while system performance was analyzed through calculated flowrate, power, energy, and reaction kinetics. The tested variations include NaOH molarity of 1 M, 1.5 M, and 2 M with volumetric ratios of NaOH:IPA at 1:0, 4:1, 3:1, and 2:1. The results show that IPA addition significantly extended reaction duration by 51.39% and reduced reaction rate by 34.39%. The optimal condition was found in the 1 M NaOH with a 2:1 ratio, which produced a peak flowrate of 23.98 mL/min and electrical energy of 89,539.28 mWh—within the ideal hydrogen consumption range of Proton Exchange Membrane Fuel Cell (PEMFC) at 14–21 mL/min—and maintained the reaction temperature below 40 °C. The validity of IPA’s stabilizing role is supported by Electrochemical Impedance Spectroscopy (EIS) data, which revealed suppressed inductive effects and a diminished Nyquist response, indicating inhibition of active corrosion reactions. Furthermore, the Tafel curves demonstrated a reduced aluminum corrosion rate in the IPA-containing system compared to that without IPA. Therefore, IPA is proven to be an effective control additive in aluminum-based hydrogen production systems to support the efficiency and sustainability of fuel cell applications.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Alkohol Isopropil, Hidrogen, Kaleng Aluminium, NaOH, PEMFC, Aluminum Can, Hydrogen, Isopropyl Alcohol, NaOH, PEMFC |
Subjects: | T Technology > TP Chemical technology > TP155.7 Chemical processes. |
Divisions: | Faculty of Industrial Technology and Systems Engineering (INDSYS) > Physics Engineering > 30201-(S1) Undergraduate Thesis |
Depositing User: | Hanin Ainussyamsi Prabowo |
Date Deposited: | 01 Aug 2025 02:14 |
Last Modified: | 01 Aug 2025 02:14 |
URI: | http://repository.its.ac.id/id/eprint/124033 |
Actions (login required)
![]() |
View Item |