Mardat, Marvel Demateo (2025) Evaluasi Kelayakan dan Durabilitas Fantom PVCP-Gliserin untuk Pencitraan Elastografi Ultrasound. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5001211093-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (7MB) | Request a copy |
Abstract
Ultrasound imaging merupakan teknik pencitraan non-invasif yang banyak digunakan untuk mengevaluasi struktur jaringan lunak tubuh manusia. Penelitian ini bertujuan untuk mengevaluasi kelayakan dan durabilitas fantom ultrasound berbahan dasar polyvinyl chloride plastisol (PVCP) yang dikombinasikan dengan gliserin dalam aplikasi elastografi ultrasound. Penelitian ini menggunakan tiga jenis sampel fantom untuk mengevaluasi karakteristik fisik, mekanik, dan citra dalam aplikasi ultrasound elastografi. Sampel pertama berupa fantom silinder berdiameter 1 cm dan tinggi 3 mm digunakan untuk karakterisasi sifat viskoelastisitas menggunakan dynamic mechanical analysis (DMA), dengan hasil berupa modulus simpan (G') dan modulus rugi (G″) yang digunakan dalam pendekatan pemodelan Kelvin–Voigt Fractional Derivative (KVFD). Sampel kedua, yaitu fantom A berukuran 10 cm × 10 cm × 4 cm, merupakan fantom homogen yang digunakan dalam pengukuran massa dan volume untuk perhitungan densitas, serta pengujian kualitas citra B-mode berdasarkan nilai pixel dan standar deviasi selama tujuh minggu, serta strain elastografi untuk memperoleh nilai kekakuan fantom selama lima minggu. Sampel ketiga, yaitu fantom B, berisi objek gipsum berbentuk bola dan dilengkapi tali berbahan filamen nilon. Fantom ini digunakan untuk pengujian strain elastografi selama enam minggu dan contrast-to-noise ratio (CNR) guna mengevaluasi tingkat kontras antara objek dan latar belakang selama tiga minggu, serta untuk pengukuran jarak antar objek secara vertikal dan horizontal selama tujuh minggu. Hasil DMA menunjukkan bahwa fantom PVCP-gliserin memiliki karakteristik viskoelastik yang menyerupai jaringan lunak manusia, dengan nilai modulus geser elastik (m₀) sebesar 0,55 kPa, viskositas fraksional (m_α) sebesar 6,34 kPa·s^α, dan orde fraksional (α) sebesar 0,265 yang mengindikasikan dominasi respons elastik dengan kontribusi viskositas rendah. Nilai densitas fantom berada pada rentang 1,076 hingga 1,117 g/cm³, yang berada dalam kisaran fisiologis dan mendekati densitas rata-rata jaringan lunak manusia sebesar 1,043 g/cm³, sehingga mendukung kesesuaian sifat fisik material fantom untuk aplikasi simulasi pencitraan ultrasound. Hasil analisis citra B-mode fantom A menunjukkan bahwa kestabilan pencitraan dipengaruhi oleh frekuensi, dengan variasi nilai pixel yang signifikan pada 10 MHz dan 12 MHz (p = 0,01 dan 0,038), namun pada 8 MHz tidak ada perbedaan yang signifikan (p >0,05) pada variasi nilai pixel dari minggu ke minggu. Nilai contrast-to-noise ratio (CNR) tertinggi diperoleh pada 4 MHz, menunjukkan kontras optimal antara objek dan latar belakang. Pengukuran jarak objek di citra pada fantom B tidak menunjukkan perbedaan yang signifikan (p >0,05) pada seluruh pasangan antar minggu kecuali salah satu jarak antar objek secara horizontal, dan seluruh deviasi berada di bawah batas toleransi geometrik <2 mm (vertikal) dan <3 mm (horizontal), menandakan akurasi spasial sistem yang layak untuk keperluan kalibrasi. Pada pengujian strain elastografi, fantom homogen menunjukkan kestabilan dari minggu ke minggu (p >0,05), sedangkan fantom berobjek gipsum menunjukkan perubahan signifikan antar minggu (p <0,05), yang mengindikasikan sensitivitas sistem terhadap perbedaan kekakuan, variasi ini dipengaruhi oleh distribusi tekanan yang tidak merata akibat posisi objek yang berada di tepi fantom. Berdasarkan hasil tersebut, fantom PVCP-gliserin menunjukkan karakteristik densitas dan viskoleastisitas yang sesuai untuk simulasi jaringan lunak, serta layak digunakan sebagai model validasi dan kalibrasi sistem ultrasound elastografi dalam studi jangka pendek hingga menengah, yaitu hingga periode observasi tujuh minggu, khususnya pada konfigurasi homogen dan frekuensi yang terkendali.
=====================================================================================================================================
Ultrasound imaging is a widely used non-invasive imaging technique for evaluating the structure of soft tissues in the human body. This study aims to evaluate the feasibility and durability of a polyvinyl chloride plastisol (PVCP)-based ultrasound phantom combined with glycerin in ultrasound elastography applications. This study uses three types of phantom samples to evaluate physical, mechanical, and imaging characteristics in ultrasound elastography applications. The first sample, a cylindrical phantom with a diameter of 1 cm and a height of 3 mm, was used to characterize viscoelastic properties using dynamic mechanical analysis (DMA), yielding storage modulus (G') and loss modulus (G″) values used in the Kelvin–Voigt Fractional Derivative (KVFD) modeling approach. The second sample, phantom A, measuring 10 cm × 10 cm × 4 cm, is a homogeneous phantom used for mass and volume measurements to calculate density, as well as B-mode image quality testing based on pixel values and standard deviation over seven weeks, and elastography strain to obtain phantom stiffness values over five weeks. The third sample, phantom B, contains a spherical gypsum object and is equipped with a nylon filament string. This phantom is used for elastography strain testing over six weeks and contrast-to-noise ratio (CNR) to evaluate the contrast level between the object and background over three weeks, as well as for measuring the vertical and horizontal distances between objects over seven weeks. DMA results showed that the PVCP-glycerin phantom has viscoelastic characteristics similar to human soft tissue, with an elastic shear modulus (m₀) of 0.55 kPa, a fractional viscosity (m_α) of 6.34 kPa·s^α, and a fractional order (α) of 0.265, indicating a dominant elastic response with low viscosity contribution. The phantom's density values range from 1.076 to 1.117 g/cm³, which falls within the physiological range and is close to the average density of human soft tissue (1.043 g/cm³), thereby supporting the suitability of the phantom material's physical properties for ultrasound imaging simulation applications. Analysis of B-mode images of Phantom A revealed that imaging stability is influenced by frequency, with significant variations in pixel values at 10 MHz and 12 MHz (p =0.01 and 0.038), but no significant differences (p >0.05) in pixel value variations from week to week at 8 MHz. The highest contrast-to-noise ratio (CNR) was obtained at 4 MHz, indicating optimal contrast between the object and background. Measurements of object distances in the image on phantom B showed no significant differences (p >0.05) across all week pairs except for one horizontal object distance, and all deviations were below the geometric tolerance limits of <2 mm (vertical) and <3 mm (horizontal), indicating adequate spatial accuracy of the system for calibration purposes. In elastography strain testing, the homogeneous phantom showed stability from week to week (p >0.05), while the gypsum-object phantom showed significant changes between weeks (p <0.05), indicating the system's sensitivity to stiffness differences. This variation was influenced by uneven pressure distribution due to the object's position at the phantom's edge. Based on these results, the PVCP-glycerin phantom exhibits density and viscoelasticity characteristics suitable for simulating soft tissue and is suitable for use as a validation and calibration model for ultrasound elastography systems in short- to medium-term studies, specifically up to a seven-week observation period, particularly in homogeneous configurations and controlled frequencies.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Dynamic Mechanical Analysis (DMA), Polyvinyl Chloride Plastisol (PVCP), Strain Wave Elastography (SWE), Ultrasound Dynamic Mechanical Analysis (DMA), Polyvinyl Chloride Plastisol (PVCP), Strain Wave Elastography (SWE), Ultrasound |
Subjects: | Q Science > QA Mathematics > QA275 Theory of errors. Least squares. Including statistical inference. Error analysis (Mathematics) Q Science > QC Physics > QC221 Acoustics. Sound Q Science > QD Chemistry > Polymerization R Medicine > R Medicine (General) > R856.2 Medical instruments and apparatus. R Medicine > R Medicine (General) > R857.M3 Biomedical materials. Biomedical materials--Testing. R Medicine > RC Internal medicine > RC78.7.U4 Ultrasonic imaging. |
Divisions: | Faculty of Natural Science > Physics > 45201-(S1) Undergraduate Thesis |
Depositing User: | Marvel Demateo Mardat |
Date Deposited: | 04 Aug 2025 07:40 |
Last Modified: | 04 Aug 2025 07:40 |
URI: | http://repository.its.ac.id/id/eprint/124427 |
Actions (login required)
![]() |
View Item |