Pengaruh Orientasi Cetak dan Temperatur Annealing terhadap Kekuatan serta Kekasaran Permukaan PLA Produk 3D FDM Komponen Toroidal Propeller Quadcopter

Sumarno, Rahmat (2025) Pengaruh Orientasi Cetak dan Temperatur Annealing terhadap Kekuatan serta Kekasaran Permukaan PLA Produk 3D FDM Komponen Toroidal Propeller Quadcopter. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5011211018-Undergraduate_Thesis.pdf] Text
5011211018-Undergraduate_Thesis.pdf
Restricted to Repository staff only

Download (11MB) | Request a copy

Abstract

Baling-baling toroidal menawarkan keunggulan kebisingan lebih rendah dibandingkan baling-baling konvensional dengan daya dorong yang setara, khususnya untuk drone multirotor. Namun, kompleksitas geometrinya menjadi tantangan dalam fabrikasi secara konvensional. Penelitian ini menjadikan Additive Manufacturing (AM) metode Fused Filament Fabrication (FDM) menggunakan filamen PLA+ sebagai solusi fabrikasi yang fleksibel, diikuti perlakuan annealing untuk mengatasi kekasaran permukaan dan meningkatkan sifat mekanik hasil cetak. Tujuan utama adalah menganalisis pengaruh variasi orientasi cetak (0°, 30°, 90°) dan temperatur annealing (50°C, 100°C selama 60 menit) terhadap kekasaran permukaan (Ra) dan sifat mekanik terutama kekuatan tarik, guna menentukan post treatment yang optimal untuk fabrikasi baling-baling toroidal. Penelitian terdiri dari tiga tahap: (1) Desain spesimen uji standar dan desain baling-baling toroidal, (2) Pencetakan spesimen dengan variasi orientasi dan annealing terkontrol, (3) Pengujian karakterisasi material dan uji mekanik (kekuatan tarik, elongasi, modulus elastisitas, kekasaran permukaan, akurasi dimensi,). Hasil penelitian menunjukkan Orientasi cetak berpengaruh signifikan terhadap kekuatan tarik. Kekuatan tarik tertinggi pada orientasi 0° (48,2 MPa), diikuti 30° (23 MPa), dan 90° (14,5 MPa). Semakin sejajar orientasi cetak terhadap arah beban tarik, maka semakin besar beban yang diterima oleh ikatan antar lapisan yang lemah. Orientasi cetak juga berpengaruh signifikan terhadap kekasaran permukaan (Ra). Permukaan terhalus pada orientasi 90° (Ra = 13,84 μm), diikuti 0° (16,89 μm), dan terkasar pada 30° (Ra = 30,13 μm) akibat stair stepping effect. Temperatur annealing berpengaruh signifikan terhadap kekuatan tarik. Annealing 100°C menghasilkan kekuatan tarik tertinggi (53,1 MPa), lebih tinggi dibandingkan 50°C (50 MPa) dan tanpa annealing, karena pengurangan void dan peningkatan kristalinitas yang signifikan. Temperatur annealing tidak berpengaruh signifikan terhadap kekasaran permukaan (Ra), meskipun annealing 100°C menunjukkan pengurangan kekasaran permukaan (Ra) lebih tinggi dibandingkan 50°C akibat pelunakan atau pelelehan parsial yang bersifat viskoelastis dan mengisi cekungan secara lokal. Nilai Ra hasil annealing tetap dalam rentang kekasaran umum FDM tanpa perlakuan pasca cetak yaitu rentang 9-40 μm. Post treatment optimal yang diperoleh adalah annealing 100°C, sehingga menjadi opsi dan telah berhasil diaplikasikan pada fabrikasi komponen baling-baling toroidal.
=====================================================================================================================================
Toroidal propellers offer lower noise levels compared to conventional propellers with equivalent thrust, particularly for multirotor drones. However, their geometric complexity poses a challenge in conventional fabrication. This study employs Additive Manufacturing (AM) using the Fused Filament Fabrication (FDM) method with PLA+ filament as a flexible fabrication solution, followed by annealing treatment to address surface roughness and enhance the mechanical properties of the printed parts. The primary objective is to analyze the influence of build orientation variations (0°, 30°, 90°) and annealing temperature (50°C, 100°C for 60 minutes) on surface roughness (Ra) and mechanical properties, particularly tensile strength, to determine the optimal post treatment for toroidal propeller fabrication. The research consists of three stages: (1) Design of standard test specimens and toroidal blades, (2) Printing of specimens with varying orientations and controlled annealing, (3) Material characterization testing and mechanical testing (tensile strength, elongation, elastic modulus, surface roughness, dimensional accuracy). The results of the study indicate that build orientation significantly affects tensile strength. The highest tensile strength was observed at 0° orientation (48.2 MPa), followed by 30° (23 MPa), and 90° (14.5 MPa). The more parallel the build orientation is to the tensile load direction, the greater the loaded by the weak interlayer bonds. Build orientation also significantly affects surface roughness (Ra). The smoothest surface was observed at 90° orientation (Ra = 13.84 μm), followed by 0° (16.89 μm), and the roughest at 30° (Ra = 30.13 μm) due to the stair stepping effect. Annealing temperature significantly affects tensile strength. Annealing at 100°C yields the highest tensile strength (53.1 MPa), higher than at 50°C (50 MPa) and without annealing, due to a significant reduction in voids and increased crystallinity. Annealing temperature does not significantly affect surface roughness (Ra), although annealing at 100°C shows a higher reduction in surface roughness (Ra) compared to 50°C due to the softening or partial melting of the viscoelastic material, which locally fills the depressions. The Ra values obtained from annealing remain within the general surface roughness range of FDM without post processing, i.e., the range of 9–40 μm. The optimal post treatment obtained is annealing at 100°C, making it a viable option and successfully applied in the fabrication of toroidal propeller components.

Item Type: Thesis (Other)
Uncontrolled Keywords: Fused Depositiong Modelling (FDM), Perlakuan Panas, Toroidal Propeller Fused Depositiong Modelling (FDM), Heat Treatment, Toroidal Propeller
Subjects: Q Science > QD Chemistry > QD79.T38 Thermal analysis
T Technology > TA Engineering (General). Civil engineering (General) > TA433 Strength of materials.
T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL776 .N67 Quadrotor helicopters--Automatic control
T Technology > TP Chemical technology > TP1140 Polymers
T Technology > TS Manufactures
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Material & Metallurgical Engineering > 28201-(S1) Undergraduate Thesis
Depositing User: Rahmat Sumarno
Date Deposited: 01 Aug 2025 13:44
Last Modified: 01 Aug 2025 13:44
URI: http://repository.its.ac.id/id/eprint/124671

Actions (login required)

View Item View Item