Implementasi Steganografi Menggunakan Seleksi Subtraktor Dinamis Berbasis Intensitas Piksel untuk Peningkatan Kualitas Citra Stego

Yoga, Tigo S (2025) Implementasi Steganografi Menggunakan Seleksi Subtraktor Dinamis Berbasis Intensitas Piksel untuk Peningkatan Kualitas Citra Stego. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5025211125-Undergraduate_Thesis.pdf] Text
5025211125-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (7MB) | Request a copy

Abstract

Keamanan komunikasi dalam era digital menjadi perhatian utama akibat meningkatnya pelanggaran privasi dan akses tidak sah terhadap data. Steganografi merupakan salah satu metode yang menawarkan solusi dengan menyembunyikan keberadaan pesan rahasia dalam media digital seperti gambar, sehingga memberikan lapisan keamanan tambahan. Namun, tantangan utama dalam steganografi adalah mencapai keseimbangan antara kapasitas penyisipan data dan kualitas visual stego image. Penelitian ini mengusulkan metode baru berbasis pemilihan subtraktor dinamis menggunakan intensitas piksel untuk meningkatkan kinerja steganografi. Pengujian akan dilakukan dengan membandingkan metode yang diusulkan terhadap metode LSB konvensional dan PVD menggunakan parameter Peak Signal to-Noise Ratio (PSNR), Mean Square Error (MSE), dan kapasitas penyisipan. Evaluasi eksperimental menunjukkan kinerja yang optimal, dengan Peak Signal-to-Noise Ratio (PSNR) mencapai maksimum 75,43 dB pada berbagai ukuran payload (1 kb hingga 100 kb). Structural Similarity Index Measure (SSIM) mencapai nilai maksimum yang sempurna sebesar 1,000, mempertahankan kemiripan yang hampir sempurna meskipun mengalami sedikit penurunan pada payload yang lebih besar. Metode yang diusulkan mengungguli metode konvensional sebesar 2,083 dB dalam performa PSNR, menjaga integritas kualitas citra sambil memungkinkan transmisi data rahasia yang aman melalui jaringan.
======================================================================================================================================
Communication security in the digital era has become a primary concern due to increasing privacy violations and unauthorized data access. Steganography is one method that offers a solution by hiding the existence of secret messages in digital media such as images, thus providing an additional layer of security. However, the main challenge in steganography is achieving a balance between data embedding capacity and the visual quality of the stego image. This research proposes a new method based on dynamic subtractor selection using pixel intensity to improve steganographic performance. Testing will be conducted by comparing the proposed method against conventional LSB and PVD methods using Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), and embedding capacity parameters. Experimental evaluation demonstrated superior performance, with Peak Signal-to-Noise Ratio (PSNR) achieving a maximum of 75.43 dB across varying payload sizes (1 kb to 100 kb). The Structural Similarity Index Measure (SSIM) achieved perfect maximum values of 1.000, maintaining near-perfect similarity despite slight decreases with larger payloads. The proposed method outperforms existing methods by 2,083 dB in PSNR performance, preserving image quality integrity while enabling secure data transmission across networks.

Item Type: Thesis (Other)
Uncontrolled Keywords: Steganografi, Pengamanan Infrastruktur Jaringan, Keamanan Informasi, Penyembunyian Data, Penyamaran Data.
Subjects: Q Science > QA Mathematics > QA76.9.A25 Computer security. Digital forensic. Data encryption (Computer science)
T Technology > TA Engineering (General). Civil engineering (General) > TA1637 Image processing--Digital techniques. Image analysis--Data processing.
Divisions: Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Informatics Engineering > 55201-(S1) Undergraduate Thesis
Depositing User: Tigo S Yoga
Date Deposited: 31 Jul 2025 01:31
Last Modified: 31 Jul 2025 01:31
URI: http://repository.its.ac.id/id/eprint/124783

Actions (login required)

View Item View Item