Azizah, Sunnatun (2025) Optimasi Penyerapan Karbon pada Hutan dengan Pengendali Reforestasi, Pencegahan Kebakaran, dan Penebangan. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5002211151-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (2MB) | Request a copy |
Abstract
Karbon dioksida merupakan salah satu gas rumah kaca yang berasal dari perubahan iklim. Peningkatan konsentrasi gas tersebut disebabkan oleh berbagai aktivitas manusia, seperti pembakaran bahan bakar fosil, deforestasi, dan lain sebagainya. Solusi yang dapat dilakukan untuk mengurangi emisi karbon dioksida adalah melalui penyerapan karbon dengan memanfaatkan ekosistem yang ada di hutan. Pada tugas akhir ini, dibahas model yang bertujuan untuk mendapatkan strategi optimal dalam penyerapan karbon. Model yang dikembangkan mencakup sistem persamaan diferensial nonlinear yang menggambarkan dinamika interaksi antara biomassa hidup (B), pertumbuhan intrinsik biomassa (r), dan area yang terbakar (I) dengan mempertimbangkan tiga strategi, yaitu reforestasi (R), pencegahan kebakaran (S), dan penebangan (F). Untuk memperoleh strategi optimal, digunakan metode Prinsip Maksimum Pontryagin yang diselesaikan secara numerik dengan pendekatan Runge-Kutta orde empat. Hasil simulasi menunjukkan bahwa penerapan strategi pengendalian secara bersamaan mampu meningkatkan penyerapan karbon secara signifikan dibandingkan kondisi tanpa kontrol. Kontrol reforestasi (R) berperan dalam meningkatkan biomassa, kontrol pencegahan kebakaran (S) efektif dalam mengurangi luas area terbakar, dan kontrol penebangan (F) yang dikelola secara optimal mampu menjaga kestabilan pertumbuhan biomassa. Model ini dapat menjadi dasar pertimbangan dalam penyusunan kebijakan pengelolaan hutan secara berkelanjutan dalam upaya mitigasi perubahan iklim.
=====================================================================================================================================
Carbon dioxide is one of the greenhouse gases that originate from climate change. The increase in gas concentration is caused by various human activities, such as burning fossil fuels, deforestation, and so on. The solution that can be done to reduce carbon dioxide emissions is through carbon sequestration by utilizing the ecosystem in the forest. In this final project, a model that aims to obtain the optimal strategy in carbon sequestration is discussed. The model developed includes a system of nonlinear differential equations describing the interaction dynamics between live biomass (B), intrinsic growth of biomass (r), and burned area (I) by considering three strategies, namely reforestation (R), fire prevention (S), and logging (F). To obtain the optimal strategy, the Pontryagin Maximum Principle method is used, which is solved numerically with a fourth-order Runge-Kutta approach. Simulation results show that the simultaneous application of control strategies can significantly increase carbon sequestration compared to the no-control condition. The reforestation control (R) plays a role in increasing biomass, the fire prevention control (S) is effective in reducing the area burned, and the logging control (F) is optimally managed to maintain stable biomass growth. This model can serve as a basis for consideration in the formulation of sustainable forest management policies in an effort to mitigate climate change.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Penyerapan Karbon, Hutan Pinus, Prinsip Maksimum Pontryagin ========================================================================================================================= Carbon Sequestration, Pine Forest, Pontryagin’s Maximum Principle |
Subjects: | Q Science > QA Mathematics > QA401 Mathematical models. |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44201-(S1) Undergraduate Thesis |
Depositing User: | Sunnatun Azizah |
Date Deposited: | 01 Aug 2025 04:17 |
Last Modified: | 01 Aug 2025 04:17 |
URI: | http://repository.its.ac.id/id/eprint/124834 |
Actions (login required)
![]() |
View Item |