Azzumardi, Andika Dibya (2025) Deteksi Kantuk Pengemudi Pada Citra Dashboard Menggunakan Metode Deep Learning Convolutional Neural Networks Dan Transfer Learning. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5003211116-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (6MB) | Request a copy |
Abstract
Kecelakaan akibat kantuk pengemudi merupakan permasalah serius yang mendorong perlunya pengembangan sistem deteksi dini. Penelitian ini bertujuan untuk mengembangkan sistem deteksi kantuk pengemudi berbasis citra dashboard kendaraan dengan memanfaatkan teknologi Deep Learning, khususnya Convolutional Neural Networks (CNN) serta pendekatan transfer learning. Metode yang digunakan mengintegrasikan Haar Cascade Classifier sebagai alat deteksi fitur wajah dan mata dengan CNN untuk mengklasifikasikan kondisi mata pengemudi. Tiga arsitektur model dievaluasi dalam penelitian ini, yakni model transfer learning dengan arsitektur MobileNet dan ResNet50, serta model Deep CNN yang dibangun secara khusus (custom). Sebanyak 2700 data citra yang terbagi secara seimbang antara kelas mata tertutup dan terbuka digunakan untuk melatih ketiga model tersebut, dengan optimasi menggunakan teknik hyperparameter tuning otomatis berbasis Optuna. Hasil pelatihan pada dataset citra menunjukkan bahwa model Deep CNN yang dibangun khusus mampu mencapai akurasi validasi hingga 0,9901 dengan nilai loss sebesar 0,0029, yang merupakan hasil terbaik di antara ketiga model. Ketiga model yang telah dilatih tersebut selanjutnya disimpan dan diintegrasikan dengan model Haar Cascade Classifier untuk diuji menggunakan dataset berisi 128 video yang terbagi secara seimbang ke dalam kelas mengantuk dan tidak mengantuk. Pada tahap pengujian, model kustom Deep CNN memperoleh akurasi sebesar 97% dengan hanya empat kesalahan prediksi sehingga menjadikannya sebagai model terbaik. Temuan ini menegaskan potensi besar model kustom Deep CNN untuk diterapkan dalam sistem deteksi kantuk secara real-time. Namun, masih terdapat tantangan seperti fluktuasi performa selama proses pelatihan dan adanya delay pada implementasi real-time, yang perlu dikaji lebih lanjut dalam penelitian selanjutnya.
====================================================================================================================================
Traffic accidents caused by driver drowsiness represent a serious issue, emphasizing the need for early detection systems. This study aims to develop a driver drowsiness detection system based on vehicle dashboard images by leveraging Deep Learning technology, specifically Convolutional Neural Networks (CNN), along with transfer learning approaches. The proposed method integrates the Haar Cascade Classifier as a tool for facial and eye feature detection with CNN for classifying the driver's eye condition. Three model architectures were evaluated in this research: transfer learning models using MobileNet and ResNet50 architectures, and a custom-built Deep CNN model. A balanced dataset consisting of 2700 images, equally divided into closed-eye and open-eye classes, was used to train the three models, optimized through automated hyperparameter tuning using Optuna. Training results demonstrated that the custom-built Deep CNN model achieved the highest validation accuracy of 0.9901 and the lowest loss value of 0.0029, making it the best-performing model among the three. All three trained models were subsequently saved and integrated with the Haar Cascade Classifier model for testing using a dataset consisting of 128 videos, equally distributed between drowsy and non-drowsy classes. During testing, the custom Deep CNN model achieved an accuracy of 97%, with only four prediction errors, thus confirming its superior performance. These findings underline the significant potential of the custom Deep CNN model for real-time drowsiness detection systems. Nevertheless, challenges remain, such as performance fluctuations during training and implementation delays in real-time applications, highlighting the need for further investigation in future research.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Convolutional Neural Networks, Deep Learning, Haar Cascade Classifier, Kantuk, Transfer Learning, Convolutional Neural Networks, Deep Learning, Drowsiness, Haar Cascade Classifier, Transfer Learning. |
Subjects: | Q Science > QA Mathematics > QA76.87 Neural networks (Computer Science) |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Statistics > 49201-(S1) Undergraduate Thesis |
Depositing User: | Andika Dibya Azzumardi |
Date Deposited: | 31 Jul 2025 10:32 |
Last Modified: | 31 Jul 2025 10:32 |
URI: | http://repository.its.ac.id/id/eprint/125462 |
Actions (login required)
![]() |
View Item |