Wahyuni, Erlin (2025) Regresi Nonparametrik Spline Truncated untuk Memodelkan Faktor-Faktor yang Memengaruhi Indeks Kedalaman Kemiskinan di Provinsi Sumatera Utara. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5003211097-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (4MB) | Request a copy |
Abstract
Kemiskinan dapat diartikan sebagai kemampuan yang terbatas dalam memenuhi kebutuhan dasar. Badan Pusat Statistik telah menetapkan indikator-indikator yang menjadi dasar tolok ukur kemiskinan, salah satunya adalah Indeks Kedalaman Kemiskinan. Pada tahun 2023, Provinsi Sumatera Utara berhasil menekan indikator Indeks Kedalaman Kemiskinan sehingga lebih rendah dibandingkan nilai nasional yaitu sebesar 1,26 persen. Namun, jika melihat besaran penurunan dari tahun sebelumnya, Sumatera Utara mencatat penurunan Indeks Kedalaman Kemiskinan yang rendah sebesar 0,1 persen. Angka tersebut lebih kecil dibandingkan provinsi dengan tingkat kemiskinan tertinggi di Pulau Sumatera. Hal tersebut menjadi fakta yang bertolak belakang mengingat Provinsi Sumatera Utara mendominasi pada struktur ekonomi di Pulau Sumatera. Berdasarkan fenomena tersebut, dilakukan penelitian untuk memodelkan faktor-faktor yang diduga memengaruhi Indeks Kedalaman Kemiskinan di Provinsi Sumatera Utara. Faktor-faktor yang akan diteliti di antaranya harapan lama sekolah, persentase rumah tangga yang menggunakan sumber air minum bersih, laju pertumbuhan ekonomi, dan Tingkat Partisipasi Angkatan Kerja. Pada penelitian ini, digunakan metode regresi nonparametrik spline truncated karena kurva antara Indeks Kedalaman Kemiskinan dan faktor-faktor yang diduga berpengaruh tidak membentuk suatu pola tertentu dan terdapat perubahan pola pada sub interval berbeda. Data yang digunakan dalam penelitian ini adalah data sekunder dari publikasi Badan Pusat Statistik Sumatera Utara dengan unit penelitian kabupaten/kota di Provinsi Sumatera Utara sebanyak 33. Model terbaik adalah model kombinasi knot (2,2,2,3) dengan nilai GCV minimum sebesar 0,09915 dan koefisien determinasi sebesar 90,62 persen. Variabel harapan lama sekolah (X1), persentase rumah tangga yang menggunakan sumber air minum bersih (X2), laju pertumbuhan ekonomi (X3), dan Tingkat Partisipasi Angkatan Kerja (X4) berpengaruh signifikan terhadap Indeks Kedalaman Kemiskinan.
===============================================================================================================================
Poverty can be defined as the limited ability to meet basic needs. The Central Bureau of Statistics (BPS) has established several indicators as benchmarks for measuring poverty, one of which is the Poverty Gap Index (P1). In 2023, North Sumatra Province successfully reduced its Poverty Gap Index to a level lower than the national average, recording a value of 1.26 percent. However, when considering the year-on-year decline, North Sumatra only experienced a slight decrease of 0.1 percent, which is relatively low compared to other provinces with the highest poverty rates in Sumatra Island. This presents a contradictory fact, given that North Sumatra dominates the economic structure of the island. Based on this phenomenon, a study was conducted to model the factors that are suspected to influence the Poverty Gap Index in North Sumatra Province. The factors examined in this study include expected years of schooling, the percentage of households using clean drinking water sources, economic growth rate, and labor force participation rate. This study employed the nonparametric truncated spline regression method, as the relationship between the Poverty Gap Index and the suspected influencing factors did not form a specific pattern and showed varying trends across different sub-intervals. The data used in this study are secondary data obtained from the Central Bureau of Statistics of North Sumatra, with research units consisting of 33 districts/cities in the province. The best-fit model was a knot combination of (2,2,2,3), which yielded the lowest GCV value of 0.09915 and a coefficient of determination (R²) of 90.62 percent. The variable expected years of schooling (X1), the percentage of households using safe drinking water (X2), economic growth rate (X3), and labor force participation rate (X4) showed significant influence on the index.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | GCV, Indeks Kedalaman Kemiskinan, Knot, Regresi Nonparametrik Spline Truncated, Tingkat Partisipasi Angkatan Kerja GCV, Knot, Nonparametric Truncated Spline Regression, Poverty Gap Index, Rate Labor Force Participation |
Subjects: | H Social Sciences > HA Statistics > HA29 Theory and method of social science statistics H Social Sciences > HA Statistics > HA31.3 Regression. Correlation. Logistic regression analysis. |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Statistics > 49201-(S1) Undergraduate Thesis |
Depositing User: | Erlin Wahyuni |
Date Deposited: | 01 Aug 2025 03:02 |
Last Modified: | 01 Aug 2025 03:02 |
URI: | http://repository.its.ac.id/id/eprint/125486 |
Actions (login required)
![]() |
View Item |