Analisis Cfd Pengaruh Sistem Pendingin Metode Single Phase Immersion Cooling Dengan Forced Flow Untuk Battery Pack Li-Ion Menggunakan Cairan TMC-7300

Natanael, Jerikho (2025) Analisis Cfd Pengaruh Sistem Pendingin Metode Single Phase Immersion Cooling Dengan Forced Flow Untuk Battery Pack Li-Ion Menggunakan Cairan TMC-7300. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5019211042-Undergraduate_Thesis.pdf] Text
5019211042-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (6MB) | Request a copy

Abstract

Dalam pengembangan kapal bertenaga listrik, baterai memiliki peran yang sangat penting dalam menyimpan energi. Sistem penyimpanan energi menggunakan baterai yang paling umum digunakan pada kapal bertenaga listrik adalah dengan menggunakan jenis baterai Lithium-Ion (Li-Ion). Battery Thermal Management System (BTMS) menjadi salah satu aspek penting untuk menjaga temperatur operasional dari baterai Li-Ion, karena dalam kondisi charging ataupun discharging, baterai akan mengeluarkan panas. Apabila panas dari baterai Li-Ion tidak segera diatasi, baterai akan mengalami overheating dan memengaruhi performa baterai. Salah satu metode pendinginan baterai yang menjanjikan adalah metode pendinginan langsung dengan cara perendaman sel baterai dan dialiri aliran fluida pendingin dengan kapasitas tertentu menggunakan cairan dielektrik. Penelitian ini bertujuan untuk menganalisis kinerja sistem pendinginan baterai Li-Ion dengan metode simulasi CFD perendaman sel baterai dengan sistem pendingin metode Forced Flow Immersion Cooling (FFIC), dengan memvariasikan simulasi arah aliran masuk fluida pendingin dan kapasitas aliran fluida pendingin. Modul baterai yang disimulasikan merupakan baterai LiFePO4 3.2 V dengan kapasitas 50 Ah yang terdiri dari 4 cell baterai yang dirangkai seri dan fluida pendingin yang digunakan adalah cairan dielektrik TMC-7300 dengan perendaman 90% dan discharging rate 3C. Simulasi baterai menggunakan ANSYS Fluent dengan metode MSMD dengan E-Chemistry Model NTGK. Arah aliran masuk fluida pendingin divariasikan antara inlet melalui depan sel baterai dan inlet melalui samping sel baterai dengan kapasitas aliran fluida pendingin 2 L/m, 4 L/m, dan 6 L/m. Hasil simulasi menunjukkan, pada keseluruhan variasi yang ada temperatur rata-rata sel baterai sudah berada di bawah batas aman temperatur operasional 40ºC. Pada variasi inlet depan, temperatur maksimum sel baterai berada di bawah batas aman operasional ketika dialiri fluida pendingin dengan kapasitas 4 L/m. Pada variasi inlet samping, temperatur maksimum sel baterai berada di bawah batas aman operasional saat dialiri fluida pendingin dengan kapasitas 4.5 L/m. Hal ini menunjukkan bahwa forced flow immersion cooling dengan kecepatan aliran fluida di atas 4 L/m metode inlet melalui depan lebih efektif dibandingkan dengan metode inlet melalui samping sel baterai. ===========================================================================================================================================
In the development of electric-powered ships, batteries play a crucial role in energy storage. Among the various types of energy storage systems, Lithium-Ion (Li-Ion) batteries are the most commonly used on electric vessels. The Battery Thermal Management System (BTMS) is a critical aspect in maintaining the operational temperature of Li-Ion batteries, as heat is generated during both charging and discharging processes. If this heat is not adequately managed, the batteries may experience overheating, which can negatively impact their performance. One promising battery cooling method is direct immersion cooling, in which battery cells are submerged in a dielectric fluid that is circulated at a specific flow rate. This study aims to analyze the thermal performance of a Li-Ion battery cooling system through Computational Fluid Dynamics (CFD) simulation, using the Forced Flow Immersion Cooling (FFIC) method. The simulation varies both the direction of the coolant inlet and the coolant flow rate. The battery module simulated in this study consists of four series-connected LiFePO₄ battery cells (3.2 V, 50 Ah each), with 90% immersion in TMC-7300 dielectric fluid and a discharging rate of 3C. The simulation was conducted using ANSYS Fluent, employing the Multi-Scale Multi-Domain (MSMD) approach with the NTGK E-Chemistry Model. Two coolant inlet configurations were evaluated: front inlet and side inlet, each with flow rates of 2 L/min, 4 L/min, and 6 L/min. The simulation results indicate that for all variations, the average battery cell temperature remains below the safe operational limit of 40°C. In the front inlet configuration, the maximum cell temperature remains below the safe limit when the coolant flow rate is at least 4 L/min. In the side inlet configuration, a flow rate of 4.5 L/min is required to keep the maximum cell temperature within the safe range. These findings suggest that forced flow immersion cooling with a coolant flow rate above 4 L/min and a front inlet configuration is more effective than the side inlet method in maintaining safe battery temperatures.

Item Type: Thesis (Other)
Uncontrolled Keywords: Aliran, Baterai, Pendinginan, Perendaman, Temperatur, Battery, Cooling, Flow, Immersion, Temperature
Subjects: V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering > VM773 Ship propulsion, Electric
Divisions: Faculty of Civil Engineering and Planning > Architechture > 23201-(S1) Undergraduate Thesis
Depositing User: Jerikho Natanael
Date Deposited: 01 Aug 2025 07:04
Last Modified: 01 Aug 2025 07:04
URI: http://repository.its.ac.id/id/eprint/125579

Actions (login required)

View Item View Item