Adista, Reyhan Khansa Alpha (2025) Natural Language Processing Dengan Kansei Engineering Untuk Analisis Desain Kursi Kereta Api Kompartemen. Masters thesis, Institut Teknologi Sepuluh Nopember.
|
Text
6010222011-Master_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (5MB) | Request a copy |
Abstract
Kereta Api (KA) Kompartemen, sebagai layanan transportasi premium, menghadapi tantangan dalam mengoptimalkan desain kursi yang dapat memenuhi ekspektasi penumpang terkait kenyamanan dan fungsionalitas. Meskipun umpan balik pengguna tersedia secara luas di platform digital, proses analisis dan interpretasi data tidak terstruktur ini untuk pengembangan desain masih menjadi kendala signifikan. Penelitian ini mengusulkan pendekatan terintegrasi dengan menggabungkan Kansei Engineering dan teknik komputasi Natural Language Processing (NLP) untuk menganalisis desain kursi KA Kompartemen. Metodologi penelitian mengadopsi pendekatan dua tahap: pertama, menggunakan Named Entity Recognition (NER) untuk mengekstraksi dan mengklasifikasikan fitur-fitur spesifik kursi dari data ulasan pengguna, mencapai skor F1 sebesar 0,964; kedua, menerapkan Latent Dirichlet Allocation (LDA) untuk mengidentifikasi tema-tema emosional yang terkait dengan setiap fitur, mencapai skor koherensi 0,551. Data penelitian terdiri dari 1.260 ulasan penumpang unik dari platform perjalanan Indonesia. Hasil dari penelitian ini mencakup: (1) identifikasi sistematis hierarki komponen kursi dengan Armrest muncul sebagai dissatisfier kritis (tingkat ketidakpuasan 27,4%) dan fitur premium seperti Seat Massage menunjukkan karakteristik delighter yang kuat; (2) pemetaan yang berhasil antara respons emosional yang mengungkapkan bahwa evaluasi penumpang beroperasi melalui kerangka psikologis yang canggih mencakup kenyamanan (32,4%), persepsi premium (18,7%), dan kepercayaan ergonomis (15,2%); dan (3) kerangka analitik cross-modal yang mencapai konvergensi 89% antara analisis sentimen dan pemetaan emosional Kansei. Penelitian ini menetapkan paradigma baru untuk desain transportasi berbasis bukti yang menjembatani linguistik komputasional, ilmu desain, dan teori perilaku konsumen, memberikan kontribusi metodologis yang sesuai untuk implementasi produksi dalam optimisasi desain industri.
========================================================================================================================
The Train Compartment Service (Kereta Api Kompartemen), as a premium transportation service, faces challenges in optimizing seat design to meet passenger expectations regarding comfort and functionality. Although user feedback is widely available on digital platforms, the process of analyzing and interpreting this unstructured data for design development remains a significant challenge. This research proposes an integrated approach combining Kansei Engineering and Natural Language Processing (NLP) computational techniques for analyzing train compartment seat design. The research methodology adopts a two-stage approach: first, utilizing Named Entity Recognition (NER) to extract and classify specific seat features from user review data, achieving an F1-score of 0.964; second, implementing Latent Dirichlet Allocation (LDA) to identify emotional themes associated with each feature, reaching a coherence score of 0.551. Research data comprised 1,260 unique passenger reviews from Indonesian travel platforms. The outcomes of this research include: (1) systematic identification of seat component hierarchy with Armrest emerging as a critical dissatisfier (27.4% dissatisfaction rate) and premium features like Seat Massage demonstrating strong delighter characteristics; (2) successful mapping of emotional responses revealing that passenger evaluation operates through sophisticated psychological frameworks encompassing comfort (32.4%), premium perception (18.7%), and ergonomic confidence (15.2%); and (3) cross-modal analytical framework achieving 89% convergence between sentiment analysis and Kansei emotional mapping. This research establishes a new paradigm for evidence-based transportation design that bridges computational linguistics, design science, and consumer behavior theory, providing methodological contributions suitable for production deployment in industrial design optimization.
| Item Type: | Thesis (Masters) |
|---|---|
| Uncontrolled Keywords: | Kansei Engineering, Natural language processing, Named Entity Recognition, Latent Dirichlet Allocation, Desain Kursi, KA Kompartemen, Kansei Engineering, Natural Language Processing, Named Entity Recognition, Latent Dirichlet Allocation, Seat Design, Train Compartment. |
| Subjects: | T Technology > TS Manufactures > TS170 New products. Product Development |
| Divisions: | Faculty of Industrial Technology and Systems Engineering (INDSYS) > Industrial Engineering > 26201-(S1) Undergraduate Thesis |
| Depositing User: | Reyhan Khansa Alpha Adista |
| Date Deposited: | 04 Aug 2025 04:22 |
| Last Modified: | 22 Oct 2025 07:15 |
| URI: | http://repository.its.ac.id/id/eprint/125858 |
Actions (login required)
![]() |
View Item |
