Briliyanti, Lenny Putri (2025) Laporan Magang di Meratus Global Logistics Surabaya. Project Report. [s.n], [s.l.]. (Unpublished)
![]() |
Text
2043211014-Project_Report.pdf - Accepted Version Restricted to Repository staff only Download (15MB) | Request a copy |
Abstract
Kegiatan magang ini dilaksanakan di Meratus Global Logistics Surabaya pada periode 3 Februari–5 Juni 2025 sebagai bagian dari pemenuhan mata kuliah wajib Program Studi Sarjana Terapan Statistika Bisnis, Fakultas Vokasi, Institut Teknologi Sepuluh Nopember. Tujuan utama magang adalah mengaplikasikan ilmu statistika dalam konteks industri logistik serta mengembangkan keterampilan teknis dan soft skills. Lingkup pekerjaan meliputi pengolahan data operasional, pembuatan dashboard monitoring kegiatan pengiriman domestik outbound dan inbound menggunakan Microsoft Power BI, pengembangan aplikasi web pengumpulan data kebutuhan dokumen invoice customer berbasis Streamlit, pembuatan videografis tutorial penggunaan aplikasi, serta penyusunan infografis profil dan business insight perusahaan. Selain itu, penulis menyusun makalah peramalan jumlah pengiriman domestik outbound menggunakan data historis Januari 2023–Maret 2025 dan metode ARIMA dan LSTM. Hasil studi memperlihatkan bahwa model ARIMA memiliki tingkat kesalahan prediksi yang lebih rendah dibandingkan LSTM serta lebih mampu merepresentasikan pola aktual data. Hasil yang diperoleh menunjukkan bahwa dashboard mempermudah pemantauan proses logistik secara real-time, aplikasi web meningkatkan efisiensi koordinasi antar divisi, media visual efektif sebagai sarana komunikasi internal maupun eksternal, dan hasil peramalan memberikan dasar kuantitatif yang akurat untuk perencanaan operasional dan pengambilan keputusan strategis.
=================================================================================================================================
This internship was carried out at Meratus Global Logistics Surabaya from February 3 to June 5, 2025, as part of the compulsory course requirement for the Applied Bachelor’s Program in Business Statistics, Vocational Faculty, Institut Teknologi Sepuluh Nopember. The main objective of the internship was to apply statistical knowledge in the logistics industry context and to develop both technical skills and soft skills. The scope of work included processing operational data, developing monitoring dashboards for domestic outbound and inbound shipments using Microsoft Power BI, creating a web-based application for collecting customer invoice document requirements using Streamlit, producing a video tutorial for the application, and designing company profile and business insight infographics. In addition, the author prepared a forecasting paper on domestic outbound shipment volumes using historical data from January 2023 to March 2025 and applying the ARIMA and LSTM methods. The study found that the ARIMA model had a lower prediction error rate compared to LSTM and was better able to represent the actual data pattern. The results showed that the dashboard facilitated real-time monitoring of logistics processes, the web application improved inter-division coordination efficiency, visual media served as effective internal and external communication tools, and the forecasting results provided accurate quantitative grounds for operational planning and strategic decision-making.
Item Type: | Monograph (Project Report) |
---|---|
Uncontrolled Keywords: | Logistik, Dashboard, Aplikasi Web, Visualisasi Data, Peramalan, Logistics, Dashboard, Web Application, Data Visualization, Forecasting |
Subjects: | H Social Sciences > HA Statistics H Social Sciences > HA Statistics > HA30.3 Time-series analysis H Social Sciences > HE Transportation and Communications T Technology > T Technology (General) T Technology > T Technology (General) > T385 Visualization--Technique |
Divisions: | Faculty of Vocational > 49501-Business Statistics |
Depositing User: | Lenny Putri Briliyanti |
Date Deposited: | 11 Aug 2025 08:45 |
Last Modified: | 11 Aug 2025 08:45 |
URI: | http://repository.its.ac.id/id/eprint/128065 |
Actions (login required)
![]() |
View Item |