Muhammad, Izzudin (2022) Penerapan Algoritma Boosting Untuk Klasifikasi Covid-19. Other thesis, Institut Teknologi Sepuluh Nopember.
|
Text
06111740000071-Undergraduate_Thesis.pdf Restricted to Repository staff only Download (2MB) | Request a copy |
Abstract
COVID-19 merupakan penyakit yang disebabkan oleh virus dari golongan coronavirus yaitu severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Virus Sars-CoV-2 memiliki 5 varian yang masuk pada variant of concern (VOC) yaitu Alpha, Beta, Delta, Gamma dan Omicron. Virus COVID-19 telah menginfeksi lebih dari 340 juta jiwa di seluruh dunia dan lebih dari 3.4 juta jiwa di Indonesia. Informasi ini menyebabkan peningkatan data yang besar sehingga diperlukan komputasi untuk memperoleh informasi dari data tersebut. Machine learning merupakan alat yang dapat memudahkan dalam analisis data besar, salah satunya adalah klasifikasi. Penelitian ini mengimplementasikan algoritma boosting untuk melakukan klasifikasi pada data sekuens Deoxyribonucleic acid (DNA) dari varian virus COVID-19. Terdapat 2 jenis algoritma boosting yang akan digunakan yaitu eXtreme Gradient Boosting (XGB) dan Light Gradient Boosting Machine (LGBM). Penelitian dilakukan menggunakan 3 kasus dan 7 jenis pembagian data uji yang pengkodeannya menggunakan metode one-hot encoded. Hasil penelitian menunjukkan bahwa LGBM memiliki waktu komputasi yang lebih cepat daripada XGB, namum XGB memiliki nilai akurasi lebih baik daripada LGBM. Akurasi tertinggi yang dihasilkan adalah 0.992.
===================================================================================================================================
COVID-19 is a disease caused by a virus from the coronavirus group, namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The Sars-CoV-2 virus has 5 variants that are included in the variant of concern (VOC) namely Alpha, Beta, Delta, Gamma, and Omicron. The COVID-19 virus has infected more than 340 million people worldwide and more than 3.4 million people in Indonesia. This information causes a significant increase in data so computation is needed to obtain information from the data. Machine learning is a tool that can facilitate the analysis of big data, one of which is classification. This study implements a boosting algorithm to classify the Deoxyribonucleic acid (DNA) sequence data from the COVID-19 virus variant. There are 2 boosting algorithms to be used, namely eXtreme Gradient Boosting (XGB) and Light Gradient Boosting Machine (LGBM). The research was conducted using 3 cases and 7 types of test data distribution which were encoded using the one-hot encoded method. The results show that LGBM has a faster computation time than XGB, but XGB has better accuracy than LGBM. The highest accuracy produced is 0.992.
| Item Type: | Thesis (Other) |
|---|---|
| Uncontrolled Keywords: | Sekuens DNA, Klasifikasi,COVID-19, One-Hot Encoded, Algoritma Boosting, DNA Sequencing, Classification, COVID-19, One-Hot Encoded, Boosting Algorithm. |
| Subjects: | Q Science > QA Mathematics > QA401 Mathematical models. |
| Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44201-(S1) Undergraduate Thesis |
| Depositing User: | Mr. Marsudiyana - |
| Date Deposited: | 21 Oct 2025 07:50 |
| Last Modified: | 21 Oct 2025 07:50 |
| URI: | http://repository.its.ac.id/id/eprint/128651 |
Actions (login required)
![]() |
View Item |
