Luthfiansyah, Rifqi Rahmadrian (2022) Peramalan Jumlah Kasus Positif Harian Covid-19 Di Provinsi DKI Jakarta Menggunakan Metode Gaussian Process Regression. Other thesis, Institut Teknologi Sepuluh Nopember.
|
Text
05211840000075-Undergraduate_thesis.pdf - Accepted Version Restricted to Repository staff only Download (7MB) | Request a copy |
Abstract
Novel coronavirus 2019 (2019-nCoV) atau virus corona sindrom pernafasan akut seperti yang sekarang disebut COVID-19, menyebar dengan cepat dari asalnya di Kota Wuhan, Provinsi Hubei, Cina ke seluruh penjuru dunia. Tanggal 2 Maret 2020 adalah pertama kali kasus COVID-19 terkonfirmasi di Indonesia, sejak kejadian tersebut kasus COVID-19 di Indonesia terus semakin meningkat terutama di Ibu Kota DKI Jakarta. Sudah banyak penelitian dilakukan untuk mengetahui transmisi virus dan faktor lain yang mempengaruhi penyebaran COVID-19. Beberapa penelitian juga sudah membuat model untuk meramal jumlah kasus positif harian COVID-19 di berbagai negara dengan metode yang beragam. Dikarenakan cepatnya penyebaran kasus COVID-19 dan tingginya angka kasus positif di Indonesia terutama di Ibu Kota DKI Jakarta, maka dari itu diperlukan pembuatan model peramalan jumlah kasus positif harian COVID-19 yang akurat dan dapat digunakan sebagai informasi untuk pihak Dinas Kesehatan DKI Jakarta yang digunakan untuk persiapan penanganan kasus positif COVID-19 di masa mendatang. Ada berbagai macam metode yang dapat dilakukan untuk membuat model peramalan, dalam penelitian ini metode yang akan digunakan untuk meramalkan kasus positif COVID-19 di DKI Jakarta adalah dengan Gaussian Process Regression. Gaussian Process Regression adalah pendekatan regresi nonparametrik. Metode ini memiliki beberapa kelebihan seperti bekerja dengan baik pada kumpulan data kecil dan memiliki kemampuan untuk memberikan pengukuran ketidakpastian pada prediksi. Selain itu metode ini juga memiliki beberapa fungsi kovarian atau kernel yang dapat membangun model dengan karakteristik yang berbeda dan setiap fungsi kovarians memiliki hyperparameter yang dapat mempengaruhi akurasi dari model yang akan dibuat. Hasil pengujian dari model terbaik yang dibuat memiliki nilai RMSE sebesar 154 dengan akurasi SMAPE sebesar 20%.
===================================================================================================================================
Novel coronavirus 2019 (2019-nCoV) or acute respiratory syndrome coronavirus as it is now called COVID-19, spread rapidly from its origin in Wuhan City, Hubei Province, China to all corners of the world. March 2, 2020 was the first time the case of COVID-19 was confirmed in Indonesia, since the incident, cases of COVID-19 in Indonesia have continued to increase, especially in the capital city of DKI Jakarta. Many studies have been conducted to determine the transmission of the virus and other factors that influence the spread of COVID-19. Several studies have also created models to predict the number of daily positive cases of COVID-19 in various countries with various methods. Due to the rapid spread of COVID-19 cases and the high number of positive cases in Indonesia, especially in the capital city of DKI Jakarta, it is therefore necessary to create a forecasting model for the number of daily positive cases of COVID-19 that is accurate and can be used as information for the DKI Jakarta Health Office. to prepare for handling positive cases of COVID-19 in the future. There are various methods that can be used to make forecasting models, in this study the method that will be used to predict positive cases of COVID-19 in DKI Jakarta is the Gaussian Process Regression. Gaussian Process Regression is a nonparametric regression approach. This method has several advantages such as working well on small data sets and having the ability to provide a measure of uncertainty in predictions. In addition, this method also has several covariance functions or kernels that can build models with different characteristics and each covariance function has hyperparameters that can affect the accuracy of the model to be made. The test results of the best model made have an RMSE value of 154 with an SMAPE accuracy of 20%.
| Item Type: | Thesis (Other) |
|---|---|
| Additional Information: | RSSI 519.535 Lut p-1 2022 3100022096633 |
| Uncontrolled Keywords: | COVID-19, Peramalan, Gaussian Process Regression, Forecasting |
| Subjects: | Q Science > QA Mathematics > QA278.2 Regression Analysis. Logistic regression Q Science > QA Mathematics > QA280 Box-Jenkins forecasting |
| Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Information System > 57201-(S1) Undergraduate Thesis |
| Depositing User: | Anis Wulandari |
| Date Deposited: | 14 Nov 2025 08:29 |
| Last Modified: | 14 Nov 2025 08:29 |
| URI: | http://repository.its.ac.id/id/eprint/128791 |
Actions (login required)
![]() |
View Item |
