Qudsi, Ony Asrarul (2025) Desain Dan Pengembangan Strategi Kontrol Virtual Synchronous Generator-Grid-Forming Inverters (VSG-GFMI) Untuk Peningkatkan Kestabilan Sistem Pada Kondisi Transien. Doctoral thesis, Institut Teknologi Sepuluh Nopember.
|
Text
7022222010-Doctoral.pdf - Accepted Version Restricted to Repository staff only Download (6MB) | Request a copy |
Abstract
Integrasi Renewable Energy Sources (RES) ke dalam sistem tenaga modern menghadirkan tantangan baru terhadap kestabilan transien, karena inverter yang digunakan tidak memiliki inersia dan redaman alami seperti Synchronous Generator (SG) konvensional. Grid-Following Inverter (GFLI) yang bergantung pada Phase-Locked Loop (PLL) cenderung kurang andal merespons gangguan besar. Untuk mengatasi hal ini, penelitian ini mengusulkan strategi kontrol Virtual Synchronous Generator-Grid-Forming Inverter (VSG-GFMI) yang memanfaatkan perhitungan virtual inertia dan desain Virtual Power System Stabilizer (VPSS). Parameter virtual inertia ditentukan dengan mempertimbangkan phase margin dan short circuit ratio agar efek coupling pada kontrol daya aktif dan reaktif dapat diminimalkan. VPSS dimodifikasi untuk beroperasi pada sistem berbasis VSG yang tidak memiliki sistem eksitasi dan AVR seperti generator sinkron konvensional. Kombinasi virtual inertia dan VPSS dioptimalkan untuk memberikan kompensasi sudut fasa yang sesuai selama gangguan transien, sehingga waktu tunda suplai daya diminimalkan dan osilasi sistem dapat diredam. Evaluasi dilakukan menggunakan model sistem tingkat sistem (system-level model) dan simulasi gangguan 3 fasa ke tanah. Hasil simulasi menunjukkan bahwa metode ini menurunkan deviasi sudut rotor hingga 60–70% dibandingkan metode konvensional, serta mempercepat waktu peredaman osilasi setelah gangguan besar dengan pengurangan ∆δ dari -0.217π rad menjadi -0,313π rad pada impedansi gangguan Zf = 1Ω. Begitu juga pada impedansi gangguan Zf = 0,2 Ω, sudut deviasi sekitar 0,567π rad, menunjukkan peningkatan kemampuan sistem dalam menahan gangguan dan mempercepat pemulihan kestabilan dinamis
==================================================================================================================================
The integration of Renewable Energy Sources (RES) into modern power systems presents new challenges to transient stability, as the inverters used do not have natural inertia and damping like conventional Synchronous Generators (SGs). Grid-Following Inverters (GFLIs) that rely on Phase-Locked Loops (PLLs) tend to be less reliable in responding to large disturbances. To address this, this study proposes a Virtual Synchronous Generator-Grid-Forming Inverter (VSG-GFMI) control strategy that utilizes virtual inertia calculations and Virtual Power System Stabilizer (VPSS) design. Virtual inertia parameters are determined by considering the phase margin and short-circuit ratio so that the coupling effect on active and reactive power control can be minimized. VPSS is modified to operate on VSG-based systems that do not have excitation systems and AVRs like conventional synchronous generators. The combination of virtual inertia and VPSS is optimized to provide appropriate phase angle compensation during transient disturbances, thus minimizing power supply delays and damping system oscillations. The evaluation was conducted using a system-level model and a 3-phase to ground fault simulation. The simulation results show that this method reduces the rotor angle deviation by 60–70% compared to the conventional method, and accelerates the oscillation damping time after a large disturbance by reducing ∆δ from -0.217π rad to -0.313π rad at a disturbance impedance of Zf = 1Ω. Similarly, at a disturbance impedance of Zf = 0.2 Ω, the angle deviation is approximately 0.567π rad, indicating an increase in the system's ability to withstand disturbances and accelerate the recovery of dynamic stability
| Item Type: | Thesis (Doctoral) |
|---|---|
| Uncontrolled Keywords: | GFMI, VSG, RES, Kestabilan Transien GFMI, VSG, RES, Transient Stability |
| Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1007 Electric power systems control T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1010 Electric power system stability. Electric filters, Passive. T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2692 Inverters |
| Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20001-(S3) PhD Thesis |
| Depositing User: | Ony Asrarul Qudsi |
| Date Deposited: | 09 Dec 2025 05:25 |
| Last Modified: | 09 Dec 2025 05:25 |
| URI: | http://repository.its.ac.id/id/eprint/128871 |
Actions (login required)
![]() |
View Item |
