Analisis Interdependensi Antarwilayah Dalam Ketahanan Pangan Nasional dengan Pendekatan Spatial Autoregressive Panel Regression

Tiffani, Gabriella Meisya (2025) Analisis Interdependensi Antarwilayah Dalam Ketahanan Pangan Nasional dengan Pendekatan Spatial Autoregressive Panel Regression. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 2043221096-Undergraduate_Thesis.pdf] Text
2043221096-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (6MB) | Request a copy

Abstract

Ketahanan pangan merupakan isu strategis yang sangat penting bagi keberlangsungan hidup manusia dan pembangunan nasional yang berkelanjutan. Di Indonesia, meskipun memiliki potensi besar dalam sektor pertanian, disparitas ketahanan pangan antarprovinsi masih menjadi tantangan yang signifikan. Perbedaan karakteristik wilayah, distribusi sumber daya yang tidak merata, serta ketergantungan antarwilayah turut memengaruhi kondisi tersebut. Selain itu, ketahanan pangan bersifat dinamis dan dapat berubah dari waktu ke waktu, sehingga diperlukan pendekatan analisis yang mampu menangkap dimensi spasial dan waktu secara bersamaan. Penelitian ini bertujuan untuk menganalisis karakteristik dan dinamika Prevalensi Ketidakcukupan Pangan / Prevalence of Undernourishment (PoU) di 34 provinsi di Indonesia selama periode 2018 hingga 2023. Penggunaan data panel memungkinkan analisis terhadap variasi antarwilayah sekaligus perubahan dari waktu ke waktu secara lebih komprehensif. Selanjutnya, untuk menganalisis adanya ketergantungan spasial antarprovinsi, digunakan pendekatan regresi spasial data panel, khususnya dengan model Spatial Autoregressive (SAR). Pendekatan ini digunakan untuk mengidentifikasi pola distribusi serta faktor-faktor signifikan yang memengaruhi PoU di tingkat provinsi. Hasil penelitian menunjukkan terdapat pengaruh ketergantungan spasial antarprovinsi sekaligus perubahan dari waktu ke waktu terhadap tingkat PoU di Indonesia, serta variabel Indeks Harga Implisit PDRB, Indeks Pembangunan Manusia (IPM), kepadatan penduduk, Indeks Kemahalan Konstruksi (IKK), dan Indeks Demokrasi Indonesia (IDI) berpengaruh signifikan terhadap PoU di Indonesia.
========================================================================================================================================
Food security is a strategic issue that plays a crucial role in ensuring human survival and achieving sustainable national development. In Indonesia, despite its substantial potential in the agricultural sector, disparities in food security across provinces remain a significant challenge. Differences in regional characteristics, unequal distribution of resources, and interregional dependency contribute to this condition. Moreover, food security is dynamic and may fluctuate over time, necessitating an analytical approach that captures both spatial and temporal dimensions simultaneously. This study aims to analyze the characteristics and dynamics of the Prevalence of Undernourishment (PoU) across 34 provinces in Indonesia during the 2018–2023 period. The use of panel data enables a more comprehensive analysis of both cross-provincial variations and temporal changes. Furthermore, to examine the presence of spatial dependence among provinces, this research employs a spatial panel regression approach, specifically the Spatial Autoregressive (SAR) model. This approach is used to identify spatial distribution patterns as well as significant factors influencing PoU at the provincial level. The results of the study indicate that there is a spatial dependence between provinces as well as changes over time on the level of PoU in Indonesia, and that the variables of the Implicit Price Index of GRDP, Human Development Index (HDI), population density, Construction Cost Index (IKK), and Indonesian Democracy Index (IDI) have a significant effect on PoU in Indonesia

Item Type: Thesis (Other)
Uncontrolled Keywords: Disparitas, PoU, Regresi Spasial Data Panel, Disparities,PoU, Spatial Panel Data Regression.
Subjects: H Social Sciences > HA Statistics
H Social Sciences > HA Statistics > HA30.6 Spatial analysis
Q Science
Divisions: Faculty of Vocational > 49501-Business Statistics
Depositing User: Gabriella Meisya Tiffani
Date Deposited: 29 Dec 2025 03:57
Last Modified: 29 Dec 2025 03:57
URI: http://repository.its.ac.id/id/eprint/129166

Actions (login required)

View Item View Item