Model Numerik Run Up Gelombang Pada Struktur Pantai Dengan Batu Pelindung Hexaloc

Hafiz, Muhammad Brilliant Danu Ghazali (2026) Model Numerik Run Up Gelombang Pada Struktur Pantai Dengan Batu Pelindung Hexaloc. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6020232005-Master_Thesis.pdf] Text
6020232005-Master_Thesis.pdf
Restricted to Repository staff only

Download (7MB) | Request a copy

Abstract

Pemanfaatan unit batu pelindung Hexaloc pada breakwater rubblemound merupakan salah satu alternatif untuk meningkatkan disipasi energi gelombang dan menekan run-up. Karena run-up yang tinggi berimplikasi langsung pada risiko overtopping dan menurunnya kinerja perlindungan pantai. Penelitian ini bertujuan (1) mengidentifikasi faktor utama yang memengaruhi run-up pada struktur pantai dengan pelindung Hexaloc, (2) menentukan konfigurasi Hexaloc yang paling efektif untuk mengurangi run-up, dan (3) menetapkan elevasi puncak (crest elevation) yang diperlukan agar tidak terjadi overtopping berdasarkan elevasi run-up hasil simulasi. Metode penelitian menggunakan pemodelan numerik Smoothed Particle Hydrodynamics (SPH) dengan perangkat lunak DualSPHysics, dengan tahapan validasi menggunakan Root Mean Square Error (RMSE) terhadap teori dan/atau data eksperimen. Simulasi dilakukan pada variasi kemiringan lereng breakwater (1:1,15; 1:1,5; 1:2), susunan Hexaloc (acak dan teratur), jumlah layer (1 dan 2 layer), serta elevasi muka air (0,60; 0,65; 0,70 m). Hasil penelitian menunjukkan bahwa slope merupakan faktor desain paling dominan: slope 1:2 menurunkan run-up rata-rata sekitar 20,06% (Ru/Hs) dan 20,41% (Ru max) dibanding slope 1:1,15. Dari sisi konfigurasi armor, 2 layer lebih efektif dibanding 1 layer dengan reduksi sekitar 5,57% (Ru/Hs) dan 6,01% (Ru max), sedangkan susunan acak umumnya lebih baik daripada teratur pada layer yang sama. Berdasarkan perhitungan elevasi puncak (Storm Surge 0,30 m; SLR 0,30 m; Freeboard 0,50 m), kebutuhan elevasi puncak berada pada rentang 1,78-1,87 m, dan nilai desain konservatif yang direkomendasikan untuk seluruh skenario adalah E = 1,87 m.
===============================================================================================================================
The use of Hexaloc protective stone units on rubble mound breakwaters is one alternative for increasing wave energy dissipation and reducing run-up. High run-up has direct implications for the risk of overtopping and reduced coastal protection performance. This study aims to (1) identify the main factors that affect run-up on coastal structures with Hexaloc protection, (2) determine the most effective Hexaloc configuration to reduce run-up, and (3) determine the crest elevation required to prevent overtopping based on the simulated run-up elevation. The research method used Smoothed Particle Hydrodynamics (SPH) numerical modeling with DualSPHysics software, with validation stages using Root Mean Square Error (RMSE) against theory and/or experimental data. Simulations were conducted on variations in breakwater slope (1:1.15; 1:1.5; 1:2), Hexaloc arrangement (random and regular), number of layers (1 and 2 layers), and water elevation (0.60; 0.65; 0.70 m). The results show that slope is the most dominant design factor: a slope of 1:2 reduces the average run-up by approximately 20.06% (Ru/Hs) and 20.41% (Ru max) compared to a slope of 1:1.15. In terms of armor configuration, 2 layers were more effective than 1 layer with a reduction of approximately 5.57% (Ru/Hs) and 6.01% (Ru max), while random arrangement was generally better than regular arrangement in the same layer. Based on peak elevation calculations (Storm Surge 0.30 m; SLR 0.30 m; Freeboard 0.50 m), the peak elevation requirement is in the range of 1.78–1.87 m, and the recommended conservative design value for all scenarios is E = 1.87 m.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Run Up, Struktur Pantai, SPH, Numerik, Hexaloc, Breakwater.
Subjects: T Technology > TC Hydraulic engineering. Ocean engineering > TC203.5 Coastal engineering
T Technology > TC Hydraulic engineering. Ocean engineering > TC333 Breakwaters
Divisions: Faculty of Marine Technology (MARTECH) > Ocean Engineering > 38101-(S2) Master Thesis
Depositing User: Muhammad Brilliant Danu Ghazali Hafiz
Date Deposited: 30 Jan 2026 08:01
Last Modified: 30 Jan 2026 08:04
URI: http://repository.its.ac.id/id/eprint/131330

Actions (login required)

View Item View Item