Optimasi Rute UAV Dalam Memantau Kebakaran Hutan di Kalimantan Menggunakan Algoritma Ant Colony Optimization

Fawwaz, Muhammad Zaidan Hafsh (2026) Optimasi Rute UAV Dalam Memantau Kebakaran Hutan di Kalimantan Menggunakan Algoritma Ant Colony Optimization. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5026221215-Undergraduate_Thesis.pdf] Text
5026221215-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (10MB) | Request a copy

Abstract

Dalam rangka meningkatkan efektivitas pemantauan serta pencegahan penyebaran kebakaran hutan di Kalimantan Barat, diperlukan optimasi rute penerbangan Unmanned Aerial Vehicle (UAV) yang efisien dan mampu beroperasi dari beberapa lokasi basis. Permasalahan optimasi rute UAV pada penelitian ini dimodelkan sebagai Multi-Depot Vehicle Routing Problem (MDVRP), dengan Badan Penanggulangan Bencana Daerah (BPBD) sebagai depo utama dan sejumlah depo klaster yang ditentukan berdasarkan hasil klasterisasi spasial persebaran hotspot pada wilayah Melawi dan Ketapang. Optimasi rute dilakukan menggunakan algoritma Ant Colony Optimization (ACO) dan disempurnakan melalui proses Local Search 2-Opt (ACO + LS) untuk meningkatkan kualitas urutan kunjungan titik pada setiap klaster. Hasil eksperimen menunjukkan bahwa ACO mampu menghasilkan rute yang feasible dengan total waktu tempuh 222,89 menit untuk 77 hotspot di Melawi dan 356,22 menit untuk 73 hotspot di Ketapang. Integrasi ACO + LS terbukti memberikan peningkatan kualitas rute melalui reduksi waktu tempuh sebesar 0,31% hingga 1,63% di wilayah Melawi serta 0,51% hingga 3,70% di wilayah Ketapang dibandingkan dengan algoritma ACO murni. Namun, peningkatan optimalitas ini disertai dengan konsekuensi waktu komputasi yang lebih lama, di mana running time meningkat dari rata-rata 10 detik pada ACO murni menjadi sekitar 3 menit pada pendekatan ACO + LS. Secara keseluruhan, pendekatan ACO dan ACO + LS dinilai layak untuk mendukung perencanaan operasional UAV pada sistem pemantauan kebakaran hutan, serta memberikan kontribusi signifikan terhadap efisiensi mitigasi kebencanaan di wilayah studi.
=====================================================================================================================================
In order to improve the effectiveness of monitoring and preventing the spread of forest fires in West Kalimantan, efficient route optimization for Unmanned Aerial Vehicles (UAVs) operating from multiple base locations is required. This study models the UAV routing problem as a Multi-Depot Vehicle Routing Problem (MDVRP), utilizing the Regional Disaster Management Agency (BPBD) as the primary depot and several cluster depots determined through spatial clustering of hotspot distributions in the Melawi and Ketapang regions. Route optimization is conducted using the Ant Colony Optimization (ACO) algorithm and further refined via the 2-Opt Local Search (ACO + LS) process to enhance the visitation sequence within each cluster. Experimental results demonstrate that ACO generates feasible routes with a total operational time of 222.89 minutes for 77 hotspots in Melawi and 356.22 minutes for 73 hotspots in Ketapang. The integration of ACO + LS is proven to improve route quality, reducing travel time by 0.31% to 1.63% in the Melawi region and 0.51% to 3.70% in the Ketapang region compared to the standalone ACO algorithm. However, this increased optimality comes at the cost of higher computational requirements, with the running time rising from an average of 10 seconds for pure ACO to approximately 3 minutes for the ACO + LS approach. Overall, both ACO and ACO + LS are deemed suitable for supporting UAV operational planning in wildfire monitoring systems, providing a significant contribution to the efficiency of disaster mitigation efforts in the study areas.

Item Type: Thesis (Other)
Uncontrolled Keywords: ACO, Kebakaran Hutan dan Lahan, VRP, MDVRP, UAV, ACO, Forest and Land Fires, VRP, MDVRP, UAV.
Subjects: T Technology > T Technology (General) > T57.84 Heuristic algorithms.
Divisions: Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Information System > 57201-(S1) Undergraduate Thesis
Depositing User: Muhammad Zaidan Hafsh Fawwaz
Date Deposited: 31 Jan 2026 06:45
Last Modified: 31 Jan 2026 06:45
URI: http://repository.its.ac.id/id/eprint/131411

Actions (login required)

View Item View Item