Permadi, Adhyve Priambodo Bhaskara (2026) Analisis Perbandingan Model Turbulensi pada Simulasi CFD Propeller Kapal Tipe Gawn Series. Other thesis, Institut Teknologi Sepuluh Nopember.
|
Text
5018211059-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (10MB) | Request a copy |
Abstract
Dalam proses produksi propeller, dilakukan pengujian eksperimental untuk menganalisa kinerja thrust dan torque. Namun, pengujian propeller memiliki keterbatasan, seperti biaya yang relatif tinggi, waktu yang lama, dan proses pengujian yang kompleks. Seiring berkembangnya teknologi, muncul Computational Fluid Dynamics (CFD) yang menawarkan solusi tingkat akurasi tinggi tanpa melakukan pengujian eksperimental dengan biaya yang relatif tinggi, memakan banyak waktu, dan prosedur pengujian yang kompleks. Dalam simulasi CFD, model turbulensi Reynolds-Averaged Navier-Stokes (RANS) merupakan salah satu pendekatan umum yang digunakan untuk memperkirakan pola aliran turbulen secara akurat, termasuk distribusi tekanan dan kecepatan yang ada di sekitar propeller. Penelitian ini bertujuan untuk melakukan perbandingan akurasi tiga model turbulensi RANS k-Ɛ, k-ω, dan k-ω SST dalam simulasi CFD propeller, serta menentukan model yang paling sesuai untuk berbagai kondisi operasi. Simulasi CFD dilakukan dengan variasi advance coefficient (J) sebanyak sembilan, yaitu J = 0,1; 0,3; 0,5; 0,7; 0,8; 0,9; 1,0; 1,1; dan 1,2. Verifikasi hasil untuk setiap model turbulensi dilakukan melalui analisis grid independence study dan grid convergence index. Hasil simulasi CFD dibandingkan dengan data pengujian menggunakan metode RMSE dengan parameter KT, 10KQ, dan efisiensi. Hasil simulasi yang diperoleh pada penelitian kali ini adalah model k-Ɛ menghasilkan akurasi baik pada range J rendah hingga menengah dengan RMSE KT rendah, namun akurasi berkurang signifikan pada range J tinggi. Model k-ω memberikan performa moderat dengan RMSE efisiensi terendah (1,74) di antara ketiga model, namun akurasi kurang pada range J rendah. Model k-ω SST memberikan hasil prediksi paling konsisten dan akurat di seluruh range operasi dengan RMSE KT sebesar 1,24%, 10KQ sebesar 1,98%, dan efisiensi sebesar 1,88%. Visualisasi pressure contour dari model k-ω SST menunjukkan distribusi tekanan paling halus pada blade surface, sementara visualisasi pathline menampilkan struktur vortex paling jelas, konsisten, dan seimbang di belakang propeller.
=================================================================================================================================
In the propeller production process, experimental tests are conducted to analyze thrust and torque performance. However, propeller testing has limitations, such as relatively high costs, lengthy duration, and complex testing procedures. With advancing technology, Computational Fluid Dynamics (CFD) has emerged as a solution offering high accuracy without the need for experimental testing, thereby reducing costs, time, and procedural complexity. In CFD simulation, the Reynolds-Averaged Navier-Stokes (RANS) turbulence model is one of the common approaches used to accurately estimate turbulent flow patterns, including pressure and velocity distribution around the propeller. This research aims to compare the accuracy of three RANS turbulence models k-Ɛ, k-ω, and k-ω SST in propeller CFD simulation and determine the most suitable model for various operating conditions. CFD simulation was conducted with nine variations of advance coefficient (J): 0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 1.0, 1.1, and 1.2. Verification of results for each turbulence model was performed through grid independence study and grid convergence index analysis. CFD simulation results were compared with experimental test data using the RMSE method with parameters KT, 10KQ, and efficiency. The simulation results obtained in this study show that the k-Ɛ model produces good accuracy in the low to medium J range with a low KT RMSE, but its accuracy decreases significantly in the high J range. The k-ω model delivers moderate performance with the lowest efficiency RMSE (1.74) among the three models, but its accuracy is poor in the low J range. The k-ω SST model provides the most consistent and accurate predictions over the entire operating range, with a KT RMSE of 1.24%, a 10KQ RMSE of 1.98%, and an efficiency RMSE of 1.88%. The pressure contour visualization from the k-ω SST model shows the smoothest pressure distribution on the blade surface, while the pathline visualization exhibits the clearest, most coherent, and most symmetric vortex structures behind the propeller.
| Item Type: | Thesis (Other) |
|---|---|
| Uncontrolled Keywords: | propeller gawn series, computational fluid dynamics (CFD), model turbulensi RANS, thrust, torque, efisiensi, thrust coefficient, torque coefficient, gawn series propeller, computational fluid dynamics (CFD), RANS turbulence model, propeller efficiency, thrust, torque |
| Subjects: | V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering > VM161 Ships--Hydrodynamics V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering > VM751 Resistance and propulsion of ships V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering > VM753 Propellers |
| Divisions: | Faculty of Marine Technology (MARTECH) > Naval Architecture and Shipbuilding Engineering > 36201-(S1) Undergraduate Thesis |
| Depositing User: | Adhyve Priambodo Bhaskara P |
| Date Deposited: | 03 Feb 2026 00:54 |
| Last Modified: | 03 Feb 2026 00:54 |
| URI: | http://repository.its.ac.id/id/eprint/131759 |
Actions (login required)
![]() |
View Item |
