Hidayat, Naufal Dzaki Ra'fat (2026) Pengembangan Bead Kitosan Termodifikasi Pektin Sebagai Biosorben untuk Penghilangan Ion Ni2+ DAN Cu2+. Other thesis, Institut Teknologi Sepuluh Nopember.
|
Text
5004221011-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (4MB) | Request a copy |
Abstract
Pencemaran air oleh logam berat khususnya ion nikel (Ni²⁺) dan tembaga (Cu²⁺), merupakan permasalahan lingkungan yang serius karena bersifat toksik, persisten, dan berpotensi terakumulasi dalam rantai makanan. Salah satu metode yang efektif dan berkelanjutan untuk mengatasi permasalahan tersebut adalah adsorpsi menggunakan biosorben berbasis biopolimer alami. Penelitian ini bertujuan untuk mengevaluasi pengaruh modifikasi pektin terhadap karakteristik fisikokimia dan morfologi bead kitosan sebagai bioadsorben, menganalisis pengaruh waktu kontak dan massa adsorben terhadap kemampuan adsorpsi, serta mengkaji perilaku adsorpsi ion Ni²⁺ dan Cu²⁺ berdasarkan model kinetika dan isoterm beserta perbedaan afinitas interaksinya. Bead kitosan termodifikasi pektin disintesis melalui metode gelasi basa menggunakan kitosan 1,5% (w/v) dengan variasi konsentrasi pektin 1%, 1,5%, dan 2% (w/v), sedangkan bead kitosan 1,5% (w/v) tanpa modifikasi digunakan sebagai pembanding, berdasarkan evaluasi morfologi dan kestabilan bead, komposisi kitosan 1,5% (w/v) + pektin 1% (w/v) dipilih sebagai kondisi optimum untuk tahap karakterisasi dan pengujian adsorpsi. Karakterisasi material dilakukan menggunakan Fourier Transform Infrared (FTIR), X-Ray Diffraction (XRD), serta Field Emission Scanning Electron Microscope–Energy Dispersive X-Ray (FESEM–EDX) untuk mengkaji gugus fungsi, struktur kristalinitas, dan morfologi permukaan bead. Uji adsorpsi dilakukan dalam sistem batch pada larutan tunggal Ni²⁺ dan Cu²⁺ melalui studi kinetika (variasi waktu kontak) serta isoterm (variasi massa adsorben) pada kondisi pH basa ringan dan suhu ruang, dengan pemodelan kinetika menggunakan pseudo first order dan pseudo second order, serta pemodelan isoterm menggunakan Langmuir, Freundlich, dan Temkin. Hasil karakterisasi menunjukkan bahwa modifikasi pektin membentuk kompleks polielektrolit kitosan-pektin yang ditunjukkan oleh pergeseran pita FTIR, penurunan kristalinitas berdasarkan pola XRD, serta permukaan bead yang lebih kasar dan berpori berdasarkan analisis FESEM. Hasil uji adsorpsi menunjukkan bahwa bead kitosan termodifikasi pektin memiliki kemampuan adsorpsi yang lebih tinggi dibandingkan bead kitosan pembanding, dengan afinitas adsorpsi Cu²⁺ lebih besar dibandingkan Ni²⁺, yang didukung oleh kapasitas adsorpsi maksimum berdasarkan model Langmuir (qmax) sebesar 128,21 mg/g untuk Cu²⁺ dan 30,77 mg/g untuk Ni²⁺. Analisis kinetika menunjukkan bahwa proses adsorpsi Ni²⁺ dan Cu²⁺ lebih sesuai mengikuti model pseudo second order, sedangkan analisis isoterm menunjukkan bahwa adsorpsi Cu²⁺ lebih sesuai direpresentasikan oleh model Freundlich (R² = 0,9834) dan Temkin (R2 = 0,9269) dibandingkan Ni²⁺ yang memiliki kecocokan lebih rendah terhadap model isoterm yang dianalisis. Secara keseluruhan, bead kitosan termodifikasi pektin berpotensi sebagai biosorben yang efektif, ramah lingkungan, dan berkelanjutan untuk penghilangan ion logam berat dari larutan berair, terutama ion Cu²⁺.
================================================================================================================================
Water contamination by heavy metals, particularly nickel (Ni²⁺) and copper (Cu²⁺) ions, is a serious environmental issue due to their toxicity, persistence, and potential bioaccumulation in the food chain. An effective and sustainable approach to address this problem is adsorption using biosorbents derived from natural biopolymers. This study aims to evaluate the effect of pectin modification on the physicochemical characteristics and morphology of chitosan Beads as a bioadsorbent, to analyze the influence of contact time and adsorbent mass on adsorption performance, and to investigate the adsorption behavior of Ni²⁺ and Cu²⁺ ions based on kinetic and isotherm models, including differences in their adsorption affinity. Pectin-modified chitosan Beads were synthesized via alkaline gelation using 1.5% (w/v) chitosan with pectin concentration variations of 1%, 1.5%, and 2% (w/v), while unmodified 1.5% (w/v) chitosan Beads were used as a reference. Based on the evaluation of Bead morphology and stability, the composition of 1.5% (w/v) chitosan + 1% (w/v) pectin was selected as the optimum condition for further characterization and adsorption tests. Material characterization was carried out using Fourier Transform Infrared (FTIR), X-Ray Diffraction (XRD), and Field Emission Scanning Electron Microscope–Energy Dispersive X-Ray (FESEM–EDX) to examine functional groups, crystallinity structure, and Bead surface morphology. Adsorption experiments were conducted in a batch system using single-solute Ni²⁺ and Cu²⁺ solutions through kinetic studies (contact time variation) and isotherm studies (adsorbent mass variation) under mildly alkaline pH and room temperature conditions. Kinetic modeling was performed using pseudo-first-order and pseudo-second-order models, while adsorption isotherms were evaluated using Langmuir, Freundlich, and Temkin models. The characterization results confirmed the formation of chitosan–pectin polyelectrolyte complexes, as indicated by FTIR peak shifts, reduced crystallinity from XRD patterns, and a rougher and more porous Bead surface observed in FESEM analysis. The adsorption results showed that pectin-modified chitosan Beads exhibited higher adsorption performance than the reference chitosan Beads, with Cu²⁺ displaying higher adsorption affinity than Ni²⁺. The maximum adsorption capacity (qmax) from the Langmuir model was 128.21 mg/g for Cu²⁺ and 30.77 mg/g for Ni²⁺. Kinetic analysis indicated that the adsorption of both Ni²⁺ and Cu²⁺ ions was better described by the pseudo-second-order model. Furthermore, isotherm analysis showed that Cu²⁺ adsorption was more appropriately represented by the Freundlich model (R² = 0.9834) and the Temkin model (R² = 0.9269) compared to Ni²⁺, which exhibited lower agreement with the analyzed isotherm models. Overall, pectin-modified chitosan Beads have the potential to serve as an effective, environmentally friendly, and sustainable biosorbent for heavy metal removal from aqueous solutions, particularly for Cu²⁺ ions.
| Item Type: | Thesis (Other) |
|---|---|
| Uncontrolled Keywords: | adsorpsi, bead kitosan-pektin, biosorben, Cu²⁺, Ni²⁺, adsorption, chitosan-pectin Beads, biosorbent, Cu²⁺, Ni²⁺. |
| Subjects: | Q Science Q Science > QD Chemistry Q Science > QD Chemistry > QD117 Absorption Q Science > QD Chemistry > QD502 Chemical kinetics |
| Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Chemistry > 47201-(S1) Undergraduate Thesis |
| Depositing User: | Naufal Dzaki Ra'fat Hidayat |
| Date Deposited: | 05 Feb 2026 01:05 |
| Last Modified: | 05 Feb 2026 01:05 |
| URI: | http://repository.its.ac.id/id/eprint/132152 |
Actions (login required)
![]() |
View Item |
