Integrasi Sistem Kontrol Pid Dalam Manajemen Ballast Dan Bouyancy Untuk Kendaraan Bawah Air Berawak Tanpa Tekanan

Zulfakhri, Ahlan (2026) Integrasi Sistem Kontrol Pid Dalam Manajemen Ballast Dan Bouyancy Untuk Kendaraan Bawah Air Berawak Tanpa Tekanan. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6019231001_Master_Thesis.pdf] Text
6019231001_Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (8MB) | Request a copy

Abstract

Manajemen ballast dan buoyancy pada Non-Pressurized Manned Submersible (NPMS) menghadapi tantangan dalam mencapai kontrol kedalaman presisi untuk operasi keselamatan hingga 20 meter. Penelitian ini mengembangkan sistem kontrol PID terintegrasi dengan macro foam technology untuk meningkatkan kinerja manajemen ballast-buoyancy NPMS, bertujuan mencapai kontrol kedalaman dan trim superior yang memenuhi standar keselamatan internasional. Metodologi meliputi pemodelan matematis NPMS (LOA 9,21 m × 1,90 m × 1,90 m), perancangan algoritma PID dengan Ziegler-Nichols tuning, dan validasi melalui simulasi MATLAB R2021b dengan analisis CFD Ansys CFX. Sistem ballast terdistribusi dalam tiga tangki (total 1.035,09 L) dilengkapi emergency blow system 631,8 L (200 bar) dan macro foam 1.115,3 L. Parameter optimal diperoleh: Kp=5,0, Ki=0,8, Kd=2,0 (kedalaman) dan Kp=0,5, Kd=2,0 (trim), menghasilkan kinerja excellent dengan rise time 12 detik, settling time 90 detik, overshoot 3,1%, steady-state error ±10 cm, dan emergency surface time 25 detik. Validasi mencapai compliance rate 100% terhadap 8 parameter benchmark internasional dengan akurasi 2 cm dan emergency response 2,5 detik. Sistem terbukti reliable untuk implementasi operasional NPMS pada aplikasi angkatan laut, komersial, dan riset kelautan, dengan potensi pengurangan volume ballast 64,4% dan peningkatan efisiensi daya 43,3% dibanding sistem konvensional.
========================================================================================================================
Ballast and buoyancy management in Non-Pressurized Manned Submersibles (NPMS) faces challenges in achieving precise depth control for safety operations up to 20 meters. This research develops an integrated PID control system with macro foam technology to enhance NPMS ballast-buoyancy management performance, aiming to achieve superior depth and trim control that meets international safety standards. The methodology includes mathematical modeling of NPMS (LOA 9.21 m × 1.90 m × 1.90 m), PID algorithm design using Ziegler Nichols tuning, and validation through MATLAB R2021b simulation with Ansys CFX CFD analysis. The ballast system is distributed across three tanks (total 1,035.09 L) equipped with an emergency blow system of 631.8 L (200 bar) and macro foam of 1,115.3 L. Optimal parameters obtained: Kp=5.0, Ki=0.8, Kd=2.0 (depth) and Kp=0.5, Kd=2.0 (trim), yielding excellent performance with rise time of 12 seconds, settling time of 90 seconds, overshoot of 3.1%, steady-state error of ±10 cm, and emergency surface time of 25 seconds. Validation achieved 100% compliance rate against 8 international benchmark parameters with 2 cm accuracy and 2.5-second emergency response. The system proves reliable for operational NPMS implementation in naval, commercial, and marine research applications, with potential for 64.4% ballast volume reduction and 43.3% power efficiency improvement compared to conventional systems. Keywords: PID control system; ballast management; buoyancy control; non pressurized manned submersible; macro foam technology; depth control; underwater vehicle; Ziegler-Nichols tuning

Item Type: Thesis (Masters)
Uncontrolled Keywords: PID control system; ballast management; buoyancy control; non pressurized manned submersible; macro foam technology; depth control; underwater vehicle; Ziegler-Nichols tuning
Subjects: V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering > VM1 Ballast (Ships)
V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering > VM161 Ships--Hydrodynamics
V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering > VM731 Marine Engines
Divisions: Faculty of Marine Technology (MARTECH) > Marine Engineering > 36101-(S2) Master Theses
Depositing User: Ahlan Zulfakhri
Date Deposited: 05 Feb 2026 05:05
Last Modified: 05 Feb 2026 05:05
URI: http://repository.its.ac.id/id/eprint/132171

Actions (login required)

View Item View Item