DETEKSI MOBIL MENGGUNAKAN OPERASI MORFOLOGI DAN KLASIFIKASI ADABOOST

MUSA, MUHAMMAD AUNORAFIQ (2016) DETEKSI MOBIL MENGGUNAKAN OPERASI MORFOLOGI DAN KLASIFIKASI ADABOOST. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5112100209-Undergraduate_Theses.pdf]
Preview
Text
5112100209-Undergraduate_Theses.pdf

Download (2MB) | Preview

Abstract

Pendeteksian mobil memiliki peranan penting dalam
manajemen sistem lalu lintas yang dinamis. Hal ini sangat
berkaitan dengan penanganan kemacetan di kota-kota besar. Agar
penangangan manajemen lalu lintas kendaraan ini bisa optimal,
tentu sangat berpengaruh dari informasi yang didapatkan dari
sistem pendeteksi kendaraan ini. Hal ini yang menjadi tantangan
dalam pendeteksian mobil pada jalan raya maupun jalan bebas
hambatan.
Banyak metode yang dapat dilakukan untuk melakukan
pendeteksian mobil, mulai dari menggunakan sensor hingga
penggunaan kamera CCTV. Sebagai alat yang multifungsi dan
lebih murah, pemerintah cenderung menerapkan kamera CCTV
sebagai alat yang digunakan untuk memantau mobil di jalan raya
maupun di jalan bebas hambatan. Oleh karena itu, diperlukan
sebuah sistem deteksi mobil yang menggunakan citra CCTV yang
akurat dan mempunyai proses yang cepat.
Metode yang yang digunakan pada tugas akhir ini yaitu
melakukan pendeteksian mobil dengan menggunakan dua layer
pada tahap pendeteksiannya. Yaitu pada layer pertama yang akan
dilakukan operasi morfologi untuk menemukan kemungkinan
lokasi lampu depan mobil. Pada layer ini dilakukan operasi Top
Hat Transform untuk mendapatkan citra yang kontras, dan metode
x
Otsu untuk mendapatkan citra biner yang kemudian citra ini
dilakukan operasi opening dan closing untuk menghilangkan noise
pada citra. Setelah itu dilakukan pencarian lokasi dimana
kemungkinan terdapat objek lampu depan dengan menggunakan
teknik Connected Component. Hasil dari layer pertama kemudian
dilakukan klasifikasi dengan Haar feature based AdaBoost.
Klasifikasi ini digunakan untuk mengurangi kejadian false alarm
dan meningkatkan nilai precision. Hasil dari metode ini yaitu
untuk nilai recall mencapai 91.5% dan untuk nilai precision yaitu
93.8%. Hal ini menandakan jumlah mobil yang tidak terdeteksi
dan jumlah kesalahan deteksi pada penggunaan metode ini hanya
sedikit.
==============================================================================================================
Car detection has important role in dynamic traffic
management system. It is closely related to the handling of traffic
congestion in big cities. In order to optmize the handling of the
congestion, the information obtained from this vehicle detection
system will be very influential. And this has been the challenge in
car detection on highways or freeways.
Many methods can be used to detect car object, starting
from the use of sensor and also through CCTV camera. The
goverment is likely to implement CCTV used to monitor cars on
highways or freeways as multifunctional and cheaper tool.
Therefore, a car detection system using CCTV image that is
accurate and has rapid process is needed.
In this final project, there are two layers for car detection
in the image. The first layer will be conducted using morphological
operations to find a possible location of the headlights. In this layer
the Top Hat Transfrom operation is conducted to obtain image
contrast, and Otsu method to obtain binary image, then this binary
image applied Opening and Closing operation to remove the noise.
The connected component technique is then applied to the result to
find areas where the possible pairs of headlight locate in image.
After that, the result from the first layer is conducted using Haar
feature based Adaboost. This classification is done to reduce the
incidence of false alarm and increase the precision value. The
xii
result show that the method can obtain recall value up to 91.5%
and the for the precision value up to 93.8%. This result indicate
that the false alarm and missing rate only slightly.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: deteksi mobil, adaptive boosting, operasi morfologi citra.
Subjects: T Technology > T Technology (General)
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK5105 Data Transmission Systems
Divisions: Faculty of Information Technology > Informatics Engineering > 55201-(S1) Undergraduate Thesis
Depositing User: Mr. Fandika aqsa
Date Deposited: 09 Jan 2017 02:14
Last Modified: 27 Dec 2018 02:44
URI: http://repository.its.ac.id/id/eprint/1385

Actions (login required)

View Item View Item