Optimisasi Sistem Kontrol Kaskade Logika Fuzzy dan PID pada Kemudi Kendaraan Sistem Steer By Wire menggunakan Quantum Behaved Particle Swarm Optimization

-, Fachrudin (2017) Optimisasi Sistem Kontrol Kaskade Logika Fuzzy dan PID pada Kemudi Kendaraan Sistem Steer By Wire menggunakan Quantum Behaved Particle Swarm Optimization. Doctoral thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 2209301010-Disertation.pdf] Text
2209301010-Disertation.pdf
Restricted to Repository staff only

Download (6MB) | Request a copy

Abstract

Penelitian ini bertujuan untuk optimisasi parameter sistem kontrol pada
sistem kemudi kendaraan dengan fully automatic of steer by wire system. Sistem
kontrol kemudi dibangun untuk mengendalikan dinamika kendaraan yang disusun
secara kaskade yaitu Fuzzy Logic Control (FLC) sebagai kontrol utama untuk
menghilangkan kesalahan lateral motion terhadap desired trajectory, serta untuk
menentukan setting point pada kontrol berikutnya yaitu Proportional–Integral–
Derivative controller (PID) sebagai kontrol penyempurna dari kontrol utama yang
berfungsi untuk menekan kesalahan yaw motion. Parameter sistem kontrol baik FLC
maupun PID dioptimisasi menggunakan Quantum Behaved Partikel Swarm
Optimization (QPSO) sebagai metode optimisasi yang lebih menjamin tercapainya
global convergence dari pada menggunakan Partikel Swarm Optimization (PSO)
sehingga diperoleh parameter yang optimal untuk menentukan lebar dan posisi dari
membership function pada FLC dan konstanta gain dari kontroler PID.
Dinamika kendaraan direpresentasikan dalam model kendaraan yang
dibangun berdasarkan 10 Degree of Freedom (DOF) dari dinamika kendaraan, terdiri
dari 7-DOF vehicle ride model (pergerakan kendaraan; rolling, pitching, bounching
dan vertical displacement each wheel) dan 3-DOF vehicle handling model
(longitudinal motion, lateral motion dan yaw motion).
Pengujian dilakukan menggunakan Software In the Loop Simulations (SILS)
dengan input desired trajectory berupa look up table (x – y) yang merepresentasikan
manuver kendaraan berliku (double lane change). Hasil pengujian Software In the
Loop Simulation (SILS) menggunakan sistem FLC dan PID yang di-tuning dengan
QPSO pada kecepatan kendaraan antara 10 – 70 Km/h dapat dipertahankan menurut
desired trajectory dengan rata-rata C-RMS error yang lebih kecil dibanding dengan
menggunakan sistem FLC dan PID yang di-tuning dengan PSO (FL-PID tuned PSO),
yaitu rata-rata lateral motion error = 0,010562 dan rata-rata yaw motion error =
0,065053. Hasil pengujian SILS selanjutnya diverifikasi menggunakan pengujian
Hardware In the Loop Simulations (HILS) yang merepresentasikan pergerakan steer
pada kendaraan yang sebenarnya. Hasil pengujian HILS menunjukkan bahwa
pergerakan kendaraan dapat dipertahankan menurut desired trajectory (double lane
change) dengan rata-rata C-RMS error 0,015965 untuk lateral motion dan 0,095685
untuk yaw motion, nilai rata-rata C-RMS error tersebut lebih besar 51.16% untuk
lateral motion dan 47.08% untuk yaw motion terhadap hasil pengujian SILS.

======================================================================================

This study to optimize the parameters of the control system on the steering
system of a vehicle with a fully automatic steer-by-wire system. Steering control
system constructed to control the dynamics of the vehicle are arranged in a cascade
consists of Fuzzy Logic Control (FLC) as the main control to eliminate errors lateral
motion of the desired trajectory, as well as to determine the setting point in the the
next control is Proportional-Integral-Derivative controller (PID) as falsifies control of
the main control that serves to suppress the yaw motion errors. Both FLC and PID
optimized using Quantum behaved Particle Swarm Optimization (QPSO) as a method
of optimization which better ensure the achievement of global convergence than using
Particle Swarm Optimization (PSO), thus gained control system parameters that
optimal, namely parameter to determine the width and position of the membership
function in the FLC and the constant gain of the PID controller.
Vehicle dynamics represented in the model vehicle built by 10 Degree of
Freedom (DOF) from the dynamics of a vehicle, consisting of a 7-DOF vehicle ride
model (the movement of vehicles; rolling, pitching, bounching and vertical
displacement of each wheel) and 3-DOF vehicle handling models (longitudinal
motion, lateral motion and yaw motion).
The test were performed using Software In the Loop Simulations (SILS) with
input desred trajectory in the form of look-up tables (x - y), which represents the
winding vehicle maneuver (double lane change). The results of Software In the Loop
Simulation (SILS) using a system of FLC and PID tuned by QPSO in the vehicle
speed between 10-70 km/h can be maintained according to the desired trajectory with
an average C-RMS error is smaller compared with the system of FLC and PID tuned
by PSO (FL- PID tuned by PSO), ie an average of the lateral motion error = 0.010562
and the average of yaw motion error = 0.065053. Then performed the Hardware In the
Loop Simulations (HILS) representing the movement of a steer in the the actual
vehicle. The results of HILS shows that the movement of the vehicle can be
maintained according to the desired trajectory (double lane change) with an average CRMS
error to lateral motion 0.015965 and 0.095685 for the yaw motion, the average
value of the C-RMS error 51.16 % greater for lateral motion and 47.08% for the yaw
motion of the test results of SILS.

Item Type: Thesis (Doctoral)
Uncontrolled Keywords: Fuzzy Logic; PID; QPSO; Lateral motion; Yaw motion
Subjects: Q Science > QA Mathematics > QA248_Fuzzy Sets
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Faculty of Industrial Technology > Electrical Engineering > 20001-(S3) PhD Thesis
Depositing User: Anis Wulandari
Date Deposited: 15 May 2017 07:47
Last Modified: 27 Dec 2017 01:50
URI: http://repository.its.ac.id/id/eprint/41266

Actions (login required)

View Item View Item