Yusup, Muh. Irvan (2016) Pemodelan Dan Analisa Energi Listrik Yang Dihasilkan Mekanisme Pembangkit Listrik Gelombang Laut Tipe Kayuh Dayung- Piezoelectric. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.
Preview |
Text
2113106050-Undergraduate-Thesis.pdf - Published Version Download (4MB) | Preview |
Abstract
Krisis energi bukan lagi hal yang baru di Indonesia,
Sehingga banyak pemikiran tentang pengembangan energi
alternatif. Beberapa pengembangan telah dilakukan, seperti
teknologi micro hydro, bio mass, energi matahari, dan energi laut.
Dari beberapa energi alternatif yang ada, energi laut merupakan
potensi yang perlu dikembangkan mengingat Indonesia adalah
negara kepulauan dengan garis pantai terbesar kedua setelah
kanada. Dengan demikian perlu dilakukan penelitian tentang
energi laut.
Pada penelitian ini dilakukan proses modeling dan simulasi
pada pembangkit listrik tenaga gelombang laut tipe kayuh dayungpiezoelectric.
Prinsip kerja dari mekanisme pembangkit listrik
tenaga gelombang laut ini adalah dengan memanfaatkan energi
kinetik dari gelombang laut. Pada saat gelombang laut menyentuh
permukaan dayung, maka dayung akan bergerak dan batang
dayung akan mengungkit penggerak, sehingga poros pendorong
akan bergerak secara horizontal dan kemudian menyentuh
piezoelectric. Gaya dorong yang diberikan poros pada
piezoelectric akan membuat piezoelectric terdefleksi, defleksi dari
piezoelectric tersebut akan menghasilkan energi listrik berupa
voltase, arus listrik dan daya listrik. Dengan memvariasikan
frekuensi gelombang laut (0.8 Hz, 1 Hz, 1.2 Hz), tinggi gelombang
laut (0.04 m, 0.05 m, 0.06 m),, dan jumlah piezoelectric (10, 20, 30) maka karakter energi yang dihasilkan piezoelectric dapat
dipelajari.
Setelah melaksanakan pemodelan dan simulasi tentang
PTLGL sistem kayuh dayung- piezoelectric, didapatkan hasil
respon voltase maksimum sebesar 6.42 V didapatkan pada
frekuensi 1.2 Hz, 6 cm tinggi gelombang dan 30 piezoelectric,
untuk voltase minimum sebesar 1.24 V didapat pada frekuensi 0.8
Hz, 4 cm tinggi gelombang, dan 10 piezoelectric. Untuk arus listrik
maksimum sebesar 20 mA didapatkan pada frekuensi 1.2 Hz,
tinggi gelombang 6 cm, dan 10 piezoelectric, sedangkan hasil
minimum sebesar 0.9 mA didapatkan pada frekuensi 0.8 Hz, 4 cm
tinggi gelombang, dan 30 piezoelectric. Daya listrik maksimum
sebesar 42 mW didapatkan pada frekuensi 1.2 Hz, tinggi
gelombang 6 cm dan 10 piezoelectric, sedangkan daya minimum
sebesar 1.4 mW didapatkan pada frekuensi 0.8 Hz, 4 cm tinggi
gelombang dan 30 jumlah piezoelectric
==================================================================================================================
Energy crisis is not a latest issue in Indonesia, therefore a lot of
idea about alternative energy had been developed. A few of developed
alternative energy such as micro hydro technology, bio mass, solar
energy, and ocean wave energy. Of which there are several developed
alternative energy, ocean wave energy is the most potential energy source
to be seriously developed considering that coastline of Indonesia is the
second largest after Canada. Thus, it is necessary to be researched.
Modeling and Simulation are executed in this research of swing
paddle-piezoelectric ocean wave power plant. The mechanism of swing
paddle-piezoelectric ocean wave power plant utilize the ocean wave
kinetic energy. When the wave graze the paddle surface, the paddle moves
so that the paddle rod swings. After the paddle rod swings, then the mass
mechanism moves. Since the mass mechanism moves horizontally, the
contact surface between mass mechanism and piezoelectric occur, which
the applied axial force deflects piezoelectric within. Hence while the
piezoelectric is deflected, the electrical element of the piezoelectric
generates electrical energy in the form of voltage, current and electric
power. By varying the frequency of the ocean waves ( 0.8 Hz , 1 Hz , 1.2
Hz ) ,the high of ocean waves ( 0:04 am , 0:05 am , 0:06 am ) , and the
number of piezoelectric ( 10, 20 , 30 ), the energy characteristic generated
by the piezoelectric can be learned .
After the modeling and simulation of swing paddle-piezoelectric
ocean wave power plant are executed. The response of maximum voltage
reached is 6.42 V, when 1.2 Hz of wave frequency, 6 cm of wave height
and 30 of piezoelectric. The minimum voltage achieved is 1.24 V, when
0.8 Hz of wave frequency, 4 cm of wave height and 10 of piezoelectric.
The maximum current reached is 20 mA, when 1.2 Hz of wave frequency, 6 cm of wave height, and 10 of piezoelectric. The minimum result of
current is 0.9 mA, attained when 0.8 Hz of wave frequency, 4 cm of wave
height, and 30 of piezoelectric. The maximum electrical power reached is
42 mW, when 1.2 Hz of wave frequency, 6 cm of wave height, 10 of
piezoelectric. In other hand the minimum electrical power attained is 1.4
mW, when 0.8 Hz of wave frequency, 4 cm of wave height, 30 of
piezoelectric.
Item Type: | Thesis (Undergraduate) |
---|---|
Additional Information: | RSM 621.313 Yus p |
Uncontrolled Keywords: | [6] S. Rao, Singiresu. 2004. Mechanical Vibration. Prentice Hall PTR, Singapore. [7] Suhandaeka. Gelombang Laut. 2012. <URL:http://suhandaeka.blogspot.co.id/2012/03/gelomba ng-laut.html> . [8] Wu, Nan., Wang, Quan ., Xie, XiangDong. 2015. “Ocean Wave Energy Harvesting with a Piezoelectric Coupled Buoy Structure”. Department of Mechanical Engineering, University of Manitoba. |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK201 Electric Power Transmission |
Divisions: | Faculty of Industrial Technology > Mechanical Engineering > 21201-(S1) Undergraduate Thesis |
Depositing User: | Users 13 not found. |
Date Deposited: | 06 Jul 2017 02:20 |
Last Modified: | 28 Dec 2018 02:25 |
URI: | http://repository.its.ac.id/id/eprint/41881 |
Actions (login required)
View Item |