Pengelompokan Prodi S1 di ITS Berdasarkan Indikator Standar Internal ITS Menggunakan Metode ROCK (RObust Clustering using linKs)

Zubaidah, Ely (2017) Pengelompokan Prodi S1 di ITS Berdasarkan Indikator Standar Internal ITS Menggunakan Metode ROCK (RObust Clustering using linKs). Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 1313100050_Undergraduate_Theses.pdf]
Preview
Text
1313100050_Undergraduate_Theses.pdf - Published Version

Download (2MB) | Preview

Abstract

ITS adalah satuan pendidikan yang menyelenggarakan pendidikan di jenjang pendidikan tinggi, penelitian dan pengabdian masyarakat. Salah satu standar yang dapat mengukur pencapaian mutu pendidikan dan pembelajaran Prodi S1 di ITS adalah standar internal ITS. Dalam standar internal ITS memuat 9 dimensi, dengan 8 dimensi diantaranya merupakan turunan dari SN Dikti (Standar Nasional Pendidikan Tinggi) tentang pendidikan, yang meliputi kompetensi lulusan terdiri dari 4 indikator, proses pembelajaran terdiri dari 3 indikator, penilaian pembelajaran terdiri dari 5 indikator, dosen dan tendik terdiri dari 10 indikator, pengelolaan pembelajaran terdiri dari 9 indikator, pembiayaan pembelajaran terdiri dari 2 indikator, isi pembelajaran dan sarana prasarana pembelajaran masing-masing terdiri dari 1 indikator. Indikator dalam dimensi tersebut memiliki tipe data kategorik.
Penelitian ini bertujuan untuk mengelompokan Prodi S1 di ITS berdasarkan indikator standar internal ITS menggunakan ROCK (RObust Clustering using linKs). Metode ROCK dipilih karena indikator dalam standar internal ITS memiliki tipe data kategorik serta mencakup unit penelitian yang kecil yaitu 26 Prodi S1. Pengelompokan menggunakan ROCK dilakukan berdasarkan dimensi dan berdasarkan standar internal ITS. Berdasarkan dimensi 1 hingga 4, kelompok yang terbentuk pada masing-masing dimensi adalah 2 kelompok. Berdasarkan dimensi 5 dan 6 kelompok yang terbentuk adalah 4 kelompok dan 3 kelompok. Sedangkan, berdasarkan standar internal ITS, kelompok yang terbentuk adalah 2 kelompok, dengan treshold θ terbaik adalah 0,35 dan nilai rasio yang dihasilkan yaitu 0,0636. Kelompok 1 (kelompok sangat baik) beranggotakan 20 Prodi S1 dan kelompok 2 (kelompok baik) beranggotakan 6 Prodi S1.
========================================================
ITS is an educational unit that organizes education in higher education, research and society service. One of the standard that can measure achievement of education and learning quality on S1 program in ITS is the internal standard of ITS. The internal standard of ITS contains 9 dimensions, wich 8 of them derived from SN Dikti (National Higher Education Standard) on education, they are graduate competence consists of 4 indicators, learning process consists of 3 indicators, assessment of learning consists of 5 indicators, lecturers and educational staff consists of 10 indicators, learning management consists of 9 indicators, learning financial consists of 2 indicators, learning content and learning infrastructure consists of 1 indicator for each of them. Indicators in that dimension have categorical data types.
The purpose of this study is to cluster S1 program in ITS based on internal standard indicators of ITS using ROCK (Robust Clustering using linKs). ROCK method was chosen because the indicators in internal standard of ITS have categorical data types and also include small research unit that is 26 S1 programs. Based on dimension 1 to 4, the result of each dimension was formed into 2 groups, then based on dimension 5 and 6 the number of group was 4 and 3, While based on internal standard indicator of ITS the number of group was 2 where the best θ treshold equal to 0.35 and ratio value is 0.0636. First group (excellent group) consists of 20 S1 Programs and second group (good group) consists of 6 S1 Programs.

Item Type: Thesis (Undergraduate)
Additional Information: RSSt 519.53 Zub p
Uncontrolled Keywords: ITS, ROCK, Internal standard of ITS
Subjects: H Social Sciences > HA Statistics
L Education > L Education (General)
Q Science > QA Mathematics > QA278 Cluster Analysis. Multivariate analysis. Correspondence analysis (Statistics)
Divisions: Faculty of Mathematics and Science > Statistics > 49201-(S1) Undergraduate Thesis
Depositing User: Zubaidah Ely
Date Deposited: 17 Jan 2018 06:22
Last Modified: 05 Mar 2019 04:10
URI: http://repository.its.ac.id/id/eprint/48473

Actions (login required)

View Item View Item