Insani, Faiz Nur Fitrah (2018) Rancang Bangun Perangkat Lunak Teenstagram untuk Mengelompokkan Topik Caption Akun Instagram dengan Permodelan Author Topic Models (Studi Kasus: Siswa SMA di Surabaya). Undergraduate thesis, Institut Teknologi Sepuluh Nopember.
| ![[thumbnail of 5214100131-Undergraduate_Theses.pdf]](http://repository.its.ac.id/style/images/fileicons/text.png) | Text 5214100131-Undergraduate_Theses.pdf - Accepted Version Restricted to Repository staff only Download (2MB) | Request a copy | 
Abstract
Menurut survei Asosiasi Penyelenggara Jasa Internet Indonesia (APJII) [2] bahwa penetrasi pengguna internet di Indonesia adalah pelajar sebanyak 69.8 persen dari 132,7 juta pengguna, dan 97,4 persen menggunakannya untuk media sosial. Konten dari media sosial yang sering dikunjungi salah satunya adalah Instagram yaitu 15 persen dengan data sebanyak 19.9 juta. Hal tersebut menunjukkan bahwa pelajar yang memakai media sosial tidak lagi hanya untuk mengikuti tren, melainkan menjadi sebuah kebutuhan untuk menunjukkan eksistensi dirinya kepada publik. Tidak hanya menunjukkan foto ataupun lokasi kegiatan para pelajar, mereka juga menunjukkan beberapa ungkapan emosi dan perasaan yang dituang dalam caption Instagram. Dari fenomena tersebut dibutuhkan sebuah platform yang mampu memberikan informasi visual terhadap aktivitas pelajar dalam hal berekspresi di sosial media Instagram dengan melakukan analisis topic modeling terhadap perilaku dan kebiasaan pelajar ketika mengunggah gambar beserta caption menggunakan metode Author-Topic Models atau ATM. Penelitian ini dikhususkan untuk menganalisa data caption akun Instagram siswa SMA di Surabaya, setelah data dididapatkan serta dianalisa menggunakan Author-Topic Models kemudian dilakukan visualisasi terhadap topik dan atau kategori siswa berdasarkan caption dari masing – masing sekolah. Melalui proses pembuatan model, telah didapatkan hasil terbaik berupa 6 topik. Adapun 6 topik tersebut dapat dikatakan baik karena memiliki nilai perplexity yang kecil setelah dilakukan percobaan 30 kali. 6 Topik yang terbentuk dianalisis dan diterjemahkan ke dalam label kategori, yaitu perasaan, fotografi, fotografi dan artis, event Surabaya, liburan, dan agama dan musik. Masing – masing topik memiliki hasil topik perasaan dibahas oleh 3 sekolah, topik event surabaya dibahas oleh 2 sekolah, topik fotografi dibahas oleh 6 sekolah, topik fotografi dan artis dibahas oleh 3 sekolah, topik liburan dibahas oleh 3 sekolah, dan topik agama dan musik dibahas oleh 1 sekolah dengan jumlah data caption 3346 dari 18 sekolah.
=============================================================================================
According   to   a   survey   conducted   by   the   Association   of 
Indonesian Internet Service Providers (APJII) [2] that internet 
user  penetration  in  Indonesia  is  69.8 percent  of  132.7  million 
are students
, and 97.4 percent use it for social media. Content 
from  social
media  that  often  visited  one  of  them  is  Instagram 
that have
15 percent with data as much as 19.9 million. It shows 
that students who use social media are no longer just to follow 
trends,  but  become  a  necessity  to  show  their  existence  to  the 
public. 
They  n
ot   only   show   photos   or   locations   of 
their
activities, 
but
also  show 
their
emotional  expressions  and 
feelings
in Instagram captions. From the phenomenon 
requires
a  platform  that  is  able  to  provide  visual  information  on  the 
activities  of  students  in  terms  of
expression  in  social  media 
Instagram   by   doing   topic 
modeling,   analysis
of   student 
behavior and habits when uploading images and captions using 
the  method  of  Author
-
Topic  Models  or  ATM.  This  study  was 
devoted  to  analyze  data  caption of  Instagram  account of
high 
school  students  in  Surabaya,  after  the  data  was  obtained  and 
analyzed  using  Author
-
Topic  Models  then  visualization  of  the 
topic  or  categories  of  students  based  on  the  caption  of  each 
school.  Through  the  modeling  process,  the  best  results  have 
been ob
tained in the form of 
6 topics
. 
The 6 topics can be said 
good   because   it   has   a   small   perplexity   value   after   the 
experiment  was  done  30  times.  6  The  topics  formed  are 
analyzed and translated into category labels, namely 
feelings
, 
photography
, 
photography  and 
celebrity
, 
Surabaya  events
, 
holidays
, and 
religion and music
. Each topic has the topic of 
feelings
discussed  by 
3  schools
,  the  topic  of  the
Surabaya 
events
discussed by 
2 schools
, 
photography
topics discussed by 
6  schools
, 
photography  topic
s  and  artists
discussed  by 
3 
schools
, 
holiday  topics
discussed  by 
3  schools
,  and 
religious 
and music
topics discussed by 
1 school
with 
3346
data caption 
data from 18 schools.
| Item Type: | Thesis (Undergraduate) | 
|---|---|
| Additional Information: | RSSI 005.1 Ins r-1 3100018074275 | 
| Uncontrolled Keywords: | Instagram, Caption, Topic modeling, High School, Author-Topic Models, ATM | 
| Subjects: | Q Science > QA Mathematics > QA76 Computer software Q Science > QA Mathematics > QA76.758 Software engineering T Technology > T Technology (General) | 
| Divisions: | Faculty of Information and Communication Technology > Information Systems > 57201-(S1) Undergraduate Thesis | 
| Depositing User: | Faiz Nur Fitrah Insani | 
| Date Deposited: | 05 Feb 2018 04:09 | 
| Last Modified: | 29 Jul 2025 08:31 | 
| URI: | http://repository.its.ac.id/id/eprint/49514 | 
Actions (login required)
|  | View Item |