Vietanti, Frizka (2018) Ternary Palladium based Cathode Catalyst Supported on Nitrogen doped Reduced Graphene Oxide for AEMFC. Masters thesis, Institut Teknologi Sepuluh Nopember.
Preview |
Text
02511650010006_Master's Thesis.pdf - Accepted Version Download (5MB) | Preview |
Abstract
Oxygen reduction reaction (ORR) adalah suatu reaksi dasar dalam sistem sel bahan bakar untuk menghasilkan energi, dimana berbasis Pd yang dikompositkan dengan dengan material berbasis karbon memainkan peranan penting. Kami telah melakukan sisntesis komposit Pd-M (M = Fe, Co, Ni) dengan nitrogen doped graphene (N-rGO), yang menghasilkan aktivitas ORR tinggi, stabilitas yang baik, dan toleransi untuk oksidasi metanol dalam media basa. Metodenya terdiri dari mickowave hidrotermal untuk mensintesis nitrogen doped graphene, metode emulsi untuk mensintesis ternari Pd-M, dan metode rotaevaporator untuk mengkompositkan Pd-M/N-rGO. Performa ORR yang dihasilkan meninjukkan PdFeCo / N-rGO> PdCoNi / N-rGO> PdFeNi / N-rGO. Katalis PdFeCo / N-rGO menghasilkan jumlah elektron transfer tertinggi yang menunjukkan kecenderungan mekanisme empat elektron serta menghasilkan % HO2- yang kecil. Hal ini juga terkonfirmasi pada analisa X-ray diffraction (XRD) dari PdFeCo/N-rGO yang menunjukkan ukuran kristal terkecil dan ID / IG tertinggi yang menyebabkan cacat ekstra pada karbon, sehingga menyebabkan peningkatan aktivitas ORR. Tidak ada aglomerasi yang jelas dan distribusi homogen dari nanopartikel PdFeCo / N-rGO di atas lembaran graphene berlapis yang jelas diamati dari field emission scanning electron microscopy (FE-SEM) dan field emission transmission electron microscopy (FE-TEM). Selain itu, X-ray photoelectron spectroscopy (XPS) digunakanuntuk mengetahui komposisi masing-masing elemen dan prosentase tertinggi dari grafitik-N yang dapat meningkatkan aktivitas ORR.====================================================
The oxygen reduction reaction (ORR) is a fundamental reaction in fuel cells to generate power, for which ternary Pd-based with carbon based catalyst plays an important role. Herein, we report the three steps synthesis of ternary PdM (M= Fe, Co, Ni) incorporated nitrogen doped graphene (N-rGO) composite, which generated high ORR activity, good stability, and tolerance for methanol oxidation in alkaline media. This method involved a microwave hydrothermal to synthesize nitrogen doped graphene, an emulsion to synthesize ternary Pd-M, and a rota-evaporator technique to make a composite. For ORR, decreased activity were found PdFeCo/N-rGO > PdCoNi/N-rGO > PdFeNi/N-rGO. The PdFeCo/NrGO catalyst has demonstrated the highest electron transfer number, which is close to dominant four electron pathway, and also generated least yield of % HO2-. This confirmed to X-ray diffraction (XRD) pattern of PdFeCo/N-rGO also showed the smallest crystallite size and the highest ID/IG which caused extra defects on carbon, thus led to increase ORR activity. There is no obvious agglomeration and the homogeneous distribution of PdFeCo/N-rGO nanoparticles over the layered graphene sheets were clearly observed from field emission scanning electron microscopy (FE-SEM) and representative field emission transmission electron microscope (FE-TEM) images. In addition, the X-ray photoelectron spectroscopy (XPS) was studied for elemental composition and presence highest precentage of graphitic-N which can increase active site leading to enhance the ORR activity.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | ternari Pd-M (M = Fe, Ni, and Co), N-rGO, oxygen reduction reaction, stabilitas, oksidasi metanol |
Subjects: | T Technology > T Technology (General) T Technology > TP Chemical technology T Technology > TP Chemical technology > TP248 Nanogels. Nanoparticles. |
Divisions: | Faculty of Industrial Technology > Material & Metallurgical Engineering > 27101-(S2) Master Thesis |
Depositing User: | Frizka Vietanti |
Date Deposited: | 01 Jul 2021 07:29 |
Last Modified: | 01 Jul 2021 07:29 |
URI: | http://repository.its.ac.id/id/eprint/56799 |
Actions (login required)
View Item |