Pemodelan kasus pneumonia balita di kota Surabaya dengan geographically weighted poisson regression dan flexibly shaped spatial scan statistic

Maghfiroh, Fitria Nur (2015) Pemodelan kasus pneumonia balita di kota Surabaya dengan geographically weighted poisson regression dan flexibly shaped spatial scan statistic. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 1313105028-Undergraduate.pdf]
Preview
Text
1313105028-Undergraduate.pdf

Download (1MB) | Preview

Abstract

Salah satu penyakit menular yang menjadi ancaman bagi balita
adalah pneumonia. Kabupaten/kota yang memiliki kasus pneumonia
balita tinggi adalah Kota Surabaya. Untuk menanggulangi kasus
pneumonia balita, maka perlu mengetahui faktor-faktor yang
mempengaruhinya serta perlu mendeteksi keberadaan kantong-kantong
kasus pneumonia balita. Dalam penelitian dilakukan pemodelan jumlah
kasus pneumonia balita dengan Geographically Weighted Poisson
Regression (GWPR) dan mendeteksi kecamatan mana saja yang menjadi
kantong kasus pneumonia balita di Kota Surabaya dengan Flexibly Shaped
Spatial Scan Statistic. Hasil pemodelan GWPR diperoleh bahwa dari
variabel persentase balita gizi buruk, balita mendapat vitamin A dua kali,
cakupan pelayanan, kepadatan penduduk, PHBS, rumah sehat dan rumah
tangga miskin menunjukkan bahwa variabel yang berpengaruh di tiap
kecamatan berbeda-beda, berdasarkan kesamaan variabel yang
berpengaruh didapatkan 11 kelompok. Untuk Hasil deteksi kantong
pneumonia balita menggunakan Flexibly Shaped Spatial Scan Statistic
didapatkan empat kantong yang menunjukkan bahwa kecamatan yang
berada dalam kantong memiliki resiko tinggi ditemukannya jumlah kasus
pneumonia balita dibandingkan di luar kantong, diantaranya kantong 1
terdiri atas Kecamatan Benowo yang memiliki nilai resiko sebesar 2,32.
Kantong 2 terdiri atas Kecamatan Tenggilis Mejoyo yang memiliki nilai
resiko sebesar 1,80. Sedangkan kantong 3 terdiri atas Kecamatan
Sukomanunggal, Genteng, Bubutan, Simokerto, Pabean Cantikan, Kenjeran,
Tambaksari dan Sawahan yang memiliki nilai resiko sebesar 1,74 dan
kantong 4 terdiri atas Kecamatan Gayungan yang memiliki resiko sebesar
1,73.

==============================================================================================================

One of diseases be a threat to children is pneumonia. One of
districts with high infant pneumonia cases is city of Surabaya. To
overcome pneumonia cases, it is necessary to know the factors that
influence it and need to detect the presence of hotspots pneumonia
cases. In a study conducted modeling number of cases of pneumonia
with Geographically Weighted Poisson Regression (GWPR) and detect
any districts where there is a case of pneumonia in the city of Surabaya
with Flexibly Shaped Spatial Scan Statistic modeling results showed that
the variables that affect the number of pneumonia cases in each district
is different, based on the similarity of the influential variables in each
district obtained the grouping as many as 11 groups. Hotspot detection
using Flexibly Shaped Spatial Scan Statistic obtained four hotspots that
show that district located in the hotspot has a relatively high risk of
finding the number of pneumonia cases than outside hotspot, hotspot 1
consists of Benowo which has a relative risk of 2,32. Hotspot 2 consists
of Tenggilis Mejoyo which has a relative risk of 1,80. While hotspot 3
consists of Sukomanunggal , Genteng, Bubutan, Simokerto, Pabean
Cantikan, Kenjeran, Tambaksari and Sawahan which has a relative risk
of 1,74 and a hotspot 4 consists of Gayungan have a relative risk of
1,73.

Item Type: Thesis (Undergraduate)
Additional Information: RSSt 519.536 Mag p
Uncontrolled Keywords: Flexibly Shaped Spatial Scan Statistic; GWPR; Pneumonia Balita
Subjects: Q Science > QA Mathematics > QA278.2 Regression Analysis. Logistic regression
Divisions: Faculty of Mathematics, Computation, and Data Science > Statistics > 49201-(S1) Undergraduate Thesis
Depositing User: - Taufiq Rahmanu
Date Deposited: 25 Jun 2019 03:06
Last Modified: 25 Jun 2019 03:06
URI: http://repository.its.ac.id/id/eprint/63226

Actions (login required)

View Item View Item