Al-Rasyid, Muhammad Isa (2019) Perancangan Sistem Akuisisi Data dengan Filter menggunakan Kombinasi Wavelet Transform dan Kalman Filter untuk Meningkatkan Kinerja Bouyweather Station Type II. Other thesis, Institut Teknologi Sepuluh Nopember.
Preview |
Text
02311540000087_Undergraduate_Theses.pdf Download (2MB) | Preview |
Abstract
Buoyweather merupakan sistem yang terdiri dari beberapa sensor variable cuaca dan pengolahan data yang dapat dikirimkan secara wireless ke work station. Beberapa variabel cuaca diantaranya suhu, kelembaban, tekanan, kecepatan angin, arah angin, dan ketinggian gelombang laut. Variabel-variabel tersebut nantinya akan melalui proses akuisisi data, yaitu diukur, dikumpulkan, diolah, dan dikirimkan menuju ground segment(sistem monitor) untuk ditampikan hasilnya. Beberapa variabel cuaca diantaranya suhu, kelembaban, tekanan, kecepatan angin, arah angin, dan ketinggian gelombang laut. Variabel-variabel tersebut nantinya akan melalui proses akuisisi data, yaitu diukur, dikumpulkan, diolah, dan dikirimkan menuju ground segment(sistem monitor) untuk ditampikan hasilnya. Sebuah sistem pengukuran tentunya memiliki beberapa kendala diantaranya adalah noise atau gangguan dalam proses pengukuran atau pengiriman data. Banyak cara untuk mengendalikan noise pada sistem pengukuran salah satunya adalah dengan filter sinyal, dengan dilakukan analisa performansi dari pembacaan sensor dengan memberikan kombinasi algoritma Wavelet Transform dan Kalman, diharapkan dapat memberikan perfomansi yang lebih baik. Hasil pembacaan setelah diberikan filter gabungan mengalami perbedaan nilai standard deviasinya terhadap data raw nya. Didapatkan nilai perbedaan deviasi standard untuk sensor suhu sebesar 0.062 OC, untuk sensor kelembaban sebesar 1.394 %Rh, untuk sensor tekanan sebesar 0.007 kPa, untuk sensor kecepatan angin sebesar 0.2 m/s dan untuk arah angin sebesar 0.12 O. Sensor suhu, tekanan, kecepatan angin mengalami penurunan standard deviasi sedangkan sensor kelembaban dan arah angin mengalami kenaikan standard deviasi. Sehingga dapat disimpulkan penggunaan kombinasi filter kalman dan wavelet lebih baik untuk sensor suhu, tekanan dan kecepatan angin.
=============================================================================================================================
Buoyweather is a system that consists of several weather variable sensors and data processing that can be sent wirelessly to the work station. Some weather variables include temperature, humidity, pressure, wind speed, wind direction and sea wave height. These variables will go through the data acquisition process, which is measured, collected, processed, and sent to the ground segment (system monitor) to show the results. Some weather variables include temperature, humidity, pressure, wind speed, wind direction and sea wave height. These variables will go through the data acquisition process, which is measured, collected, processed, and sent to the ground segment (system monitor) to show the results. A measurement system certainly has several obstacles including noise or interference in the process of measuring or sending data. There are many ways to control noise in a measurement system, one of which is a signal filter, by analyzing performance from sensor readings by providing a combination of Wavelet Transform and Kalman algorithms, which are expected to provide better performance. The reading results after being given a combined filter experience a difference in the standard deviation value of the raw data. The value of the difference in standard deviation for the temperature sensor is 0.062 OC, for the humidity sensor is 1.394% Rh, for the pressure sensor is 0.007 kPa, for the wind speed sensor is 0.2 m / s and for the wind direction is 0.12 O. Temperature, pressure, and wind speed sensors have decreased deviation standards while sensors humidityd and wind direction have increased standard deviation. So it can be concluded that the use of a combination of kalman and wavelet filters is better for sensors temperature, pressure,and wind speed.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Akuisisi data, filter kalman, wavelet denoising, standar deviasi |
Subjects: | Q Science > QA Mathematics > QA402.3 Kalman filtering. Q Science > QA Mathematics > QA403.3 Wavelets (Mathematics) T Technology > TA Engineering (General). Civil engineering (General) > TA1573 Detectors. Sensors |
Divisions: | Faculty of Industrial Technology > Physics Engineering > 30201-(S1) Undergraduate Thesis |
Depositing User: | Muhammad Isa Al-Rasyid |
Date Deposited: | 12 Nov 2024 02:18 |
Last Modified: | 12 Nov 2024 02:18 |
URI: | http://repository.its.ac.id/id/eprint/69991 |
Actions (login required)
View Item |